Effect of Wall Thickness and Surface Conditions on Creep Behavior of a Single-Crystal Ni-Based Superalloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Creep Testing
2.3. Microstructural Characterization
3. Results
3.1. Microstructure
3.2. Creep Behavior
4. Discussion
5. Conclusions
- Heat treatment under vacuum at an ambient pressure of 10−4 Pa led to a single-phase γ′ surface layer.
- Surface condition did not affect the creep behavior of thin specimens.
- Creep tests at 980 °C under 230 MPa leading to creep rupture times <100 h showed no significant thickness debit effect.
- Creep tests at 980 °C under 150 MPa, leading to significantly longer creep rupture times (>200 h), showed a significant thickness debit effect, i.e., a strong deterioration of creep properties with wall thicknesses of 0.8–0.4 mm.
- Thickness debit effect was time-dependent, i.e., it was governed by the formation of oxide layers and γ′-free or γ′-depleted areas. With increasing creep times, these diffusion-controlled mechanisms affected larger proportions of the cross-section, thus, deteriorating the creep properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibbons, T.B. The performance of Superalloys. Adv. Mater. 1990, 2, 583–588. [Google Scholar] [CrossRef]
- Duhl, D.N. Directionally Solidified Superalloys. In Superalloys II; Sims, C.T., Stoloff, N.S., Hagel, W.S., Eds.; John Wiley & Sons, Inc.: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada; Singapore, 1987; pp. 189–214. [Google Scholar]
- Doner, M.; Heckler, J.A. Identification of Mechanisms Responsible for Degredation in Thin-Wall Stress-Rupture Properties. Proc. Int. Symp. Superalloy. 1988, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Baldan, A. Combined effects of thin-section size, grain size and cavities on the high temperature creep fracture properties of a nickel-base superalloy. J. Mater. Sci. 1997, 32, 35–45. [Google Scholar] [CrossRef]
- Gibbons, T.B. Creep properties of Nimonic 90 in thin section. Met. Technol. 1981, 8, 472–475. [Google Scholar] [CrossRef]
- Doner, M.; Heckler, J.A. Effects of Section Thickness and Orientation on Creep-Rupture Properties of Two Advanced Single Crystal Alloys. SAE Tech. Pap. 1985, 851785. [Google Scholar] [CrossRef]
- Baldan, A. On the thin-section size dependent creep strength of a single crystal nickel-base superalloy. J. Mater. Sci. 1995, 30, 6288–6298. [Google Scholar] [CrossRef]
- Pandey, M.C.; Taplin, D.M.R. Prediction of rupture lifetime in thin sections of a nickel base superalloy. Scr. Metall. Mater. 1994, 31, 719–722. [Google Scholar] [CrossRef]
- Pandey, M.C.; Taplin, D.M.R.; Rao, P.R. An analysis of specimen geometry effect on the creep life of inconel alloy X-750. Mater. Sci. Eng. A 1989, 118, 33–39. [Google Scholar] [CrossRef]
- Seetharaman, V.; Cetel, A.D. Thickness debit in creep properties of PWA 1484. Proc. Int. Symp. Superalloy. 2004, 207–214. [Google Scholar] [CrossRef]
- Bensch, M.; Preußner, J.; Hüttner, R.; Obigodi, G.; Virtanen, S.; Gabel, J.; Glatzel, U. Modelling and analysis of the oxidation influence on creep behaviour of thin-walled structures of the single-crystal nickel-base superalloy René N5 at 980 °C. Acta Mater. 2010, 58, 1607–1617. [Google Scholar] [CrossRef]
- Srivastava, A.; Gopagoni, S.; Needleman, A.; Seetharaman, V.; Staroselsky, A.; Banerjee, R. Effect of specimen thickness on the creep response of a Ni-based single-crystal superalloy. Acta Mater. 2012, 60, 5697–5711. [Google Scholar] [CrossRef]
- Bensch, M.; Fleischmann, E.; Konrad, C.H.; Fried, M.; Rae, C.M.F.; Glatzel, U. Secondary Creep of Thin-Walled Specimens Affected by Oxidation. Proc. Int. Symp. Superalloy. 2012, 387–394. [Google Scholar] [CrossRef]
- Hüttner, R.; Gabel, J.; Glatzel, U.; Völkl, R. First creep results on thin-walled single-crystal superalloys. Mater. Sci. Eng. A 2009, 510–511, 307–311. [Google Scholar] [CrossRef]
- Hüttner, R.; Völkl, R.; Gabel, J.; Glatzel, U. Creep behavior of thick and thin walled structures of a single crystal nickel-base superalloy at high temperatures—Experimental method and results. Proc. Int. Symp. Superalloy. 2008, 719–724. [Google Scholar] [CrossRef]
- Krieg, F.; Mosbacher, M.; Fried, M.; Affeldt, E.; Glatzel, U. Creep and Oxidation Behaviour of Coated and Uncoated Thin Walled Single Crystal Samples of the Alloy PWA1484. Proc. Int. Symp. Superalloy. 2016, 773–779. [Google Scholar] [CrossRef]
- Brunner, M.; Bensch, M.; Völkl, R.; Affeldt, E.; Glatzel, U. Thickness influence on creep properties for Ni-based superalloy M247LC SX. Mater. Sci. Eng. A 2012, 550, 254–262. [Google Scholar] [CrossRef]
- Konrad, C.H.; Brunner, M.; Kyrgyzbaev, K.; Völkl, R.; Glatzel, U. Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings. J. Mater. Process. Technol. 2011, 211, 181–186. [Google Scholar] [CrossRef]
- Körber, S.; Völkl, R.; Glatzel, U. 3D printed polymer positive models for the investment casting of extremely thin-walled single crystals. J. Mater. Process. Technol. 2021, 293, 117095. [Google Scholar] [CrossRef]
- Körber, S.; Fleck, M.; Völkl, R.; Glatzel, U. Anisotropic Growth of the Primary Dendrite Arms in a Single-Crystal Thin-Walled Nickel-Based Superalloy. Adv. Eng. Mater. 2022, 24, 2101332. [Google Scholar] [CrossRef]
- Völkl, R.; Freund, D.; Fischer, B. Economical Creep Testing of Ultrahigh-temperature Alloys. J. Test. Eval 2003, 31, 35–43. [Google Scholar]
- Völkl, R.; Fischer, B. Mechanical Testing of Ultra-high Temperature Alloys. Exp. Mech. 2004, 44, 121–128. [Google Scholar] [CrossRef]
- Kassner, M.E. Fundamentals of Creep in Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Epishin, A.; Link, T.; Portella, P.D.; Brückner, U. Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy. Acta Mater. 2000, 48, 4169–4177. [Google Scholar] [CrossRef]
- Schulze, M.; Seidel, S. Verdampfungsgleichgewicht und Dampfdruck; Springer Fachmedien: Wiesbaden, Germany, 2018. [Google Scholar] [CrossRef]
- Alcock, C.B.; Itkin, V.P.; Horrigan, M.K. Vapour pressure equations for the metallic elements: 298-2500K. Can. Metall. Q. 1984, 23, 309–313. [Google Scholar] [CrossRef]
- D’Souza, N.; Welton, D.; Kelleher, J.; West, G.D.; Dong, Z.H.; Brewster, G.; Dong, H.B. Microstructure instability of ni-base single crystal superalloys during solution heat treatment. Proc. Int. Symp. Superalloy. 2016, 267–277. [Google Scholar] [CrossRef]
- Strößner, J.; Konrad, C.H.; Brunner, M.; Völkl, R.; Glatzel, U. Influence of casting surface on creep behaviour of thin-wall Ni-base superalloy Inconel100. J. Mater. Process. Technol. 2013, 213, 722–727. [Google Scholar] [CrossRef]
- Evans, R.W.; Wilshire, B. Creep of Metals and Alloys; U.S. Department of Energy: Oak Ridge, TN, USA, 1985; ISBN 0904357597.
- Bensch, M.; Sato, A.; Warnken, N.; Affeldt, E.; Reed, R.C.; Glatzel, U. Modelling of High Temperature Oxidation of Alumina-Forming Single-Crystal Nickel-Base Superalloys. Acta Mater. 2012, 60, 5468–5480. [Google Scholar] [CrossRef]
Ni | Cr | Co | Mo | W | Al | Ti | Ta | Hf | C | B | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|
61.5 | 8.1 | 9.3 | 0.5 | 9.4 | 5.7 | 0.7 | 3.3 | 1.4 | 0.07 | 0.017 | 0.007 |
Wall Thickness | In Air | Under Vacuum | ||||
---|---|---|---|---|---|---|
With Casting Surface | Without Casting Surface | Prepared from Bulk Material | With Casting Surface | Without Casting Surface | Prepared from Bulk Material | |
0.4 mm | 150 MPa 190 MPa 230 MPa | 230 MPa | 150 MPa 230 MPa | 150 MPa 230 MPa | 230 MPa | 230 MPa |
0.8 mm | 150 MPa 230 MPa | 230 MPa | 230 MPa | 150 MPa 230 MPa | 230 MPa | 230 MPa |
1.0 mm | 230 MPa | 230 MPa | 230 MPa | 230 MPa | 230 MPa | 230 MPa |
2.0 mm | 150 MPa 230 MPa | 230 MPa | 230 MPa | 230 MPa | 230 MPa | 230 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Körber, S.; Wolff-Goodrich, S.; Völkl, R.; Glatzel, U. Effect of Wall Thickness and Surface Conditions on Creep Behavior of a Single-Crystal Ni-Based Superalloy. Metals 2022, 12, 1081. https://doi.org/10.3390/met12071081
Körber S, Wolff-Goodrich S, Völkl R, Glatzel U. Effect of Wall Thickness and Surface Conditions on Creep Behavior of a Single-Crystal Ni-Based Superalloy. Metals. 2022; 12(7):1081. https://doi.org/10.3390/met12071081
Chicago/Turabian StyleKörber, Selina, Silas Wolff-Goodrich, Rainer Völkl, and Uwe Glatzel. 2022. "Effect of Wall Thickness and Surface Conditions on Creep Behavior of a Single-Crystal Ni-Based Superalloy" Metals 12, no. 7: 1081. https://doi.org/10.3390/met12071081
APA StyleKörber, S., Wolff-Goodrich, S., Völkl, R., & Glatzel, U. (2022). Effect of Wall Thickness and Surface Conditions on Creep Behavior of a Single-Crystal Ni-Based Superalloy. Metals, 12(7), 1081. https://doi.org/10.3390/met12071081