Effect of Post-Processing Heat Treatments on Short-Term Creep Response at 650 °C for a Ti-6Al-4V Alloy Produced by Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Initial Microstructure
3.2. Creep Response
3.3. Hardness Variation in Unstressed Portions of the Samples (Aging Response)
3.4. Microstructure
3.5. Fractographic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spigarelli, S.; Paoletti, C.; Cabibbo, M.; Cerri, E.; Santecchia, E. On the creep performance of the Ti-6Al-4V alloy processed by additive manufacturing. Addit. Manuf. 2022, 42, 102520. [Google Scholar] [CrossRef]
- Nishino, S.; Shiozawa, K.; Aikawa, Y. Effect of microstructure on creep and creep-fatigue behavior in Ti-6Al-4V alloy at elevated temperature. Mater. Sci. Sci. Res. Int. 1997, 4, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Reis, D.A.P.; Silva, C.R.M.; Nono, M.C.A.; Barboza, M.J.R.; Piorino Neto, F.; Perez, E.A.C. Effect of environment on the creep behavior of the Ti-6Al-4V alloy. Mater. Sci. Eng. A 2005, 399, 276–280. [Google Scholar] [CrossRef]
- Dos Reis, A.G.; Reis, D.A.P.; de Moura Neto, C.; Barboza, M.J.R.; Oñoro, J. Creep behavior and surface characterization of a laser surface nitrided Ti-6Al-4V alloy. Mater. Sci. Eng. A 2013, 577, 48–53. [Google Scholar] [CrossRef]
- Barboza, M.J.R.; Moura Neto, C.; Silva, C.R.M. Creep mechanisms and physical modeling for Ti-6Al-4V. Mater. Sci. Eng. A 2004, 369, 201–209. [Google Scholar] [CrossRef]
- Alabort, E.; Kontis, P.; Barba, D.; Dragnevski, K.; Reed, R.C. On the mechanisms of superplasticity in Ti-6Al-4V. Acta Mater. 2016, 105, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zong, Y.; Shan, D.; Guo, B. Relationship between constant-load creep, decreasing-load creep and stress relaxation of titanium alloy. Mater. Sci. Eng. A 2015, 638, 106–113. [Google Scholar] [CrossRef]
- Badea Lavina, V.B.; Martin, S.; Jacques, R. Creep behavior of Ti-6Al-4V from 450 °C to 600 °C. Univ. Polytech. Buchar. Sci. Bull. Ser. B 2014, 76, 185–196. [Google Scholar]
- Whittaker, M.T.; Harrison, W.J.; Lancaster, R.J.; Williams, S. An analysis of modern creep lifing methodologies in the titanium alloy Ti6-4. Mater. Sci. Eng. A 2013, 577, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Barboza, M.J.R.; Perez, E.A.C.; Medeiros, M.M.; Reis, D.A.P.; Nono, M.C.A.; Neto, F.P.; Silva, C.R.M. Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites. Mater. Sci. Eng. A 2006, 428, 319–326. [Google Scholar] [CrossRef]
- Almeida, G.F.C.; Couto, A.A.; Reis, D.A.P.; Massi, M.; da Silva Sobrinho, A.S.; de Lima, N.B. Effect of plasma nitriding on the creep and tensile properties of the Ti-6Al-4V alloy. Metals 2018, 8, 618. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, V.M.C.A.; Da Silva, M.C.L.; Pinto, C.G.; Suzuki, P.A.; Machado, J.P.B.; Chad, V.M.; Barboza, M.J.R. Short-term creep properties of Ti-6Al-4V alloy subjected to surface plasma carburizing process. J. Mater. Res. Technol. 2015, 4, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, V.M.C.A.; Vazquez, A.M.; Aguiar, C.; Robin, A.; Barboza, M.J.R. Nitride coatings improve Ti-6Al-4V alloy behavior in creep tests. Mater. Sci. Eng. A 2016, 670, 357–368. [Google Scholar] [CrossRef]
- Viespoli, L.M.; Bressan, S.; Itoh, T.; Hiyoshi, N.; Prashanth, K.G.; Berto, F. Creep and high temperature fatigue performance of as build selective laser melted Ti-based 6Al-4V titanium alloy. Eng. Fail. Anal. 2020, 111, 104477. [Google Scholar] [CrossRef]
- Perez, R.A.; Nakajima, H.; Dyment, F. Diffusion in α-Ti and Zr. Mater. Trans. 2003, 44, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-G.; Lee, S.; Lee, C.-S. Quasi-static and dynamic deformation behavior of Ti–6Al–4V alloy containing fine α2-Ti3Al precipitates. Mater. Sci. Eng. A 2004, 366, 25–37. [Google Scholar] [CrossRef]
- Nespoli, A.; Bennato, N.; Villa, E.; Passaretti, F. Study of anisotropy through microscopy, internal friction and electrical resistivity measurements of Ti-6Al-4V samples fabricated by selective laser melting. Rapid Prototyp. J. 2022, 28, 1060–1075. [Google Scholar] [CrossRef]
- Lee, D.-S.; Lee, S.; Lee, Y. Effect of precipitates on damping capacity and mechanical properties of Ti–6Al–4V alloy. Mater. Sci. Eng. A 2008, 486, 19–26. [Google Scholar] [CrossRef]
- Seo, D.-I.; Lee, J.-B. Localized Corrosion Resistance on Additively Manufactured Ti Alloys by Means of Electrochemical Critical Localized Corrosion Potential in Biomedical Solution Environments. Materials 2021, 14, 7481. [Google Scholar] [CrossRef]
- Mier, M.; Mukherjee, A.K. The strain hardening behavior of superplastic Ti-6Al-4V. Scr. Metall. Mater. 1990, 24, 331–336. [Google Scholar] [CrossRef]
- Yang, C.; Li, M.Q.; Liu, Y.G. Severe plastic deformation induced precipitation of the ordered α2-Ti3Al phase in Ti–5Al–2Sn–2Zr–4Mo–4Cr. J. Alloy. Compd. 2021, 854, 157277. [Google Scholar] [CrossRef]
- Cao, S.Z.; Xiao, S.L.; Chen, Y.Y.; Xu, L.J.; Wang, X.P.; Han, J.C.; Jia, Y. Phase transformations of the L12-Ti3Al phase in γ-TiAl alloy. Mater. Des. 2017, 121, 61–68. [Google Scholar] [CrossRef]
- Dichtl, C.; Zhang, Z.B.; Gardner, H.; Bagot, P.; Radecka, A.; Dye, D.; Thomas, M.; Sandala, R.; Quinta da Fonseca, J.; Preuss, M. Element segregation and α2 formation in primary α of a near-α Ti-alloy. Mater. Char. 2020, 164, 110327. [Google Scholar] [CrossRef]
- Lunt, D.; Busolo, T.; Xu, X.; Quinta da Fonseca, J.; Preuss, M. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy. Acta Mater. 2017, 129, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-a titanium alloys. Mater. Sci. Eng. A 2003, 341, 229–235. [Google Scholar] [CrossRef]
Al | V | Fe | O | N | C | H | Ti |
---|---|---|---|---|---|---|---|
5.5–6.5 | 3.5–4.5 | 0.25 | 0.1 | <0.05 | <0.08 | <0.011 | bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoletti, C.; Cabibbo, M.; Santecchia, E.; Cerri, E.; Spigarelli, S. Effect of Post-Processing Heat Treatments on Short-Term Creep Response at 650 °C for a Ti-6Al-4V Alloy Produced by Additive Manufacturing. Metals 2022, 12, 1084. https://doi.org/10.3390/met12071084
Paoletti C, Cabibbo M, Santecchia E, Cerri E, Spigarelli S. Effect of Post-Processing Heat Treatments on Short-Term Creep Response at 650 °C for a Ti-6Al-4V Alloy Produced by Additive Manufacturing. Metals. 2022; 12(7):1084. https://doi.org/10.3390/met12071084
Chicago/Turabian StylePaoletti, Chiara, Marcello Cabibbo, Eleonora Santecchia, Emanuela Cerri, and Stefano Spigarelli. 2022. "Effect of Post-Processing Heat Treatments on Short-Term Creep Response at 650 °C for a Ti-6Al-4V Alloy Produced by Additive Manufacturing" Metals 12, no. 7: 1084. https://doi.org/10.3390/met12071084
APA StylePaoletti, C., Cabibbo, M., Santecchia, E., Cerri, E., & Spigarelli, S. (2022). Effect of Post-Processing Heat Treatments on Short-Term Creep Response at 650 °C for a Ti-6Al-4V Alloy Produced by Additive Manufacturing. Metals, 12(7), 1084. https://doi.org/10.3390/met12071084