Synthesis of Ni-Cu Heterostructures with SPS to Achieve a Balance of Strength and Plasticity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Compositions and Microstructures
3.2. Mechanical Properties
4. Discussion
5. Conclusions
- In the Ni-Cu HS material, the Cu domain was uniformly distributed in the Ni region in the form of long fibers, and the Ni phase and the Cu phase were alternately and uniformly distributed to form a layered structure.
- In the sintered Ni-30Cu, the Ni grains and Cu grains were approximately equiaxed, and the Ni-30Cu with 80% deformation at room temperature was elongated into a sheet-like structure along the rolling direction. After annealing, the grains in the Cu region were recrystallized into equiaxed grains, and the grains in the Ni region were refined.
- The uniform elongation of Ni-Cu heterostructure materials increased gradually with the increase in the Cu volume fraction, and the yield strength first increased and then decreased gradually with the increase in the Cu volume fraction. The Ni-30Cu heterostructure material had a good combination of strength and plasticity.
- When the Cu volume fraction was less than 30%, the HDI strengthening effect in the Ni-Cu HS material could offset the effect of the yield strength reduction caused by Cu; with the further increase in the Cu volume fraction, the HDI strengthening effect was less than the yield strength reduction effect brought on by Cu.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, X.L.; Zhu, Y.T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties. Mater. Res. Lett. 2017, 5, 527–532. [Google Scholar] [CrossRef]
- Wang, Y.F.; Wang, M.S.; Fang, X.T.; Guo, F.J.; Liu, H.Q.; Scattergood, R.O.; Huang, C.X.; Zhu, Y.T. Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. Int. J. Plast. 2019, 123, 196–207. [Google Scholar] [CrossRef]
- Liu, X.L.; Yuan, F.P.; Zhu, Y.T.; Wu, X.L. Extraordinary Bauschinger effect in gradient structured copper. Scr. Mater. 2018, 150, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Jiang, P.; Chen, L.; Yuan, F.; Zhu, Y.T. Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 2014, 111, 7197–7201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, T.H.; Li, W.L.; Tao, N.R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587–1590. [Google Scholar] [CrossRef] [Green Version]
- Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1456. [Google Scholar] [CrossRef]
- Fang, X.T.; He, G.Z.; Zheng, C.; Ma, X.L.; Kaoumi, D.; Li, Y.S.; Zhu, Y.T. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Mater. 2020, 186, 644–655. [Google Scholar] [CrossRef]
- Zhang, B.; Kou, Y.; Xia, Y.Y.; Zhang, X. Modulation of strength and plasticity of multiscale Ni/Cu laminated composites. Mater. Sci. Eng. A 2015, 636, 216–220. [Google Scholar] [CrossRef]
- Wu, X.L.; Yang, M.X.; Yuan, F.P.; Wu, G.L.; Wei, Y.J.; Huang, X.X.; Zhu, Y.T. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. USA 2015, 112, 14501–14505. [Google Scholar] [CrossRef] [Green Version]
- Sawangrat, C.; Kato, S.; Orlov, D.; Ameyama, K. Harmonic-structured copper: Performance and proof of fabrication concept based on severe plastic deformation of powders. J. Mater. Sci. 2014, 49, 6579–6585. [Google Scholar] [CrossRef]
- Fujiwara, H.; Kawabata, T.; Miyamoto, H.; Ameyama, K. Mechanical properties of harmonic structured composite with pure Titanium and Ti-48 at%Al alloy by MM/SPS process. Mater. Trans. 2013, 54, 1619–1623. [Google Scholar] [CrossRef]
- Yang, D.K.; Hodgson, P.D.; Wen, C.E. Simultaneously enhanced strength and ductility of titanium via multimodal grain structure. Scr. Mater. 2010, 63, 941–944. [Google Scholar] [CrossRef]
- Long, Y.; Wang, T.; Zhang, H.Y.; Huang, X.L. Enhanced ductility in a bimodal ultrafine-grained Ti–6Al–4V alloy fabricated by high energy ball milling and spark plasma sintering. Mater. Sci. Eng. A 2014, 608, 82–89. [Google Scholar] [CrossRef]
- Park, K.; Nishiyama, M.; Nakada, N. Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater. Sci. Eng. A 2014, 604, 135–141. [Google Scholar] [CrossRef]
- Wang, Y.F.; Yang, M.X.; Ma, X.L.; Wang, M.S.; Yin, K.; Huang, A.H.; Huang, C.X. Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates. Mater. Sci. Eng. A 2018, 727, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Yuan, F.P.; Yang, M.X.; Jiang, P.; Zhang, C.X.; Liu, C.; Wei, Y.G.; Ma, E. Nanodomained Nickel unite nanocrystal strength with coarse-grain ductility. Sci. Rep. 2015, 5, 11728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.H.; Topping, T.; Bingert, J.F.; Thornton, J.J.; Dangelewicz, A.M.; Li, Y.; Liu, W.; Zhu, Y.T.; Zhou, Y.Z.; Lavernia, E.L. High tensile ductility and strength in bulk nanostructured nickel. Adv. Mater. 2008, 20, 3028–3033. [Google Scholar] [CrossRef]
- Samvatsar, K.; Rao, V. Corrosion aspects of Ni–Cu alloy (UNS N04400) and its surface improvement: A review. Emergent Mate Rials. 2021, 4, 1785–1801. [Google Scholar] [CrossRef]
- Rubio, W.M.; Paulino, G.H.; Silva, E.C.N. Analysis, manufacture and characterization of Ni/Cu functionally graded structures. Mater. Des. 2012, 41, 255–265. [Google Scholar] [CrossRef]
- Song, A.J.; Ma, M.Z.; Zhou, R.Z.; Wang, L.; Zhang, W.G.; Tan, C.L.; Liu, R.P. Grain growth and sintering characteristics of Ni–Cu alloy nanopowders consolidated by the spark plasma sintering method. Mater. Sci. Eng. A 2012, 538, 219–223. [Google Scholar] [CrossRef]
- Guo, Y.T.; Xu, Z.Z.; Liu, M.; Zu, S.; Yang, Y.N.; Wang, Q.; Yu, Z.L.; Zhang, Z.L.; Ren, L.Q. The corrosion resistance, biocompatibility and biomineralization of the dicalcium phosphate dihydrate coating on the surface of the additively manufactured NiTi alloy. J. Mater. Res. Technol. 2022, 17, 622–635. [Google Scholar] [CrossRef]
- Konovalov, S.; Osintsev, K.; Golubeva, A.; Smelov, V.; Ivanov, Y.; Chen, X.Z.; Komissarova, I. Surface modification of Ti-based alloy by selective laser melting of Ni-based superalloy powder. J. Mater. Res. Technol. 2020, 9, 8796–8807. [Google Scholar] [CrossRef]
- Kang, X.; Chai, L.J.; Zhang, C.Q.; Guan, H.T.; Wang, Y.Y.; Ma, Y.L.; Sun, Q.; Li, Y.Q. Investigation of microstructure and wear resistance of laser-clad CoCrNiTi and CrFeNiTi medium-entropy alloy coatings on Ti sheet. Opt. Laser Technol. 2021, 145, 107518. [Google Scholar]
- Ma, E.; Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Wu, X.L. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.L.; Huang, C.X.; Moering, J.; Ruppert, M.; Hoppel, H.W.; Goken, M.; Narayan, J.; Zhu, Y.T. Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Mater. 2016, 116, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.K.; Fang, X.T.; Wang, Y.F.; Jiang, P.; Wang, J.J.; Liu, C.M.; Wu, X.L.; Zhu, Y.T.; Koch, C.C. Tuning heterostructures with powder metallurgy for high synergistic strengthening and hetero-deformation induced hardening. Mater. Sci. Eng. A 2020, 777, 139074. [Google Scholar] [CrossRef]
- Sun, B.B.; Sui, M.L.; Wang, Y.M.; He, G.; Eckert, J.; Ma, E. Ultrafine composite microstructure in a bulk Ti alloy for high strength, strain hardening and tensile ductility. Acta Mater. 2006, 54, 1349–1357. [Google Scholar] [CrossRef]
- Wu, X.L.; Jiang, P.; Chen, L.; Zhang, J.F.; Yuan, F.P.; Zhu, Y.T. Synergetic strengthening by gradient structure. Mater. Res. Lett. 2014, 2, 185–191. [Google Scholar] [CrossRef]
- Niu, G.; Tang, Q.B.; Zurob, H.S.; Wu, H.B.; Xu, L.X.; Gong, N. Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains. Mater. Sci. Eng. A 2019, 759, 1–10. [Google Scholar] [CrossRef]
- Feaugas, X. On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K: Back stress and effective stress. Acta Mater. 1999, 47, 3617–3632. [Google Scholar] [CrossRef]
- Dickson, J.I.; Boutin, J.; Handfield, L. A comparison of two simple methods for measuring cyclic internal and effective stresses. Mater. Sci. Eng. A 1984, 64, L7–L11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, W.; Yu, Z.; Lin, Y. Synthesis of Ni-Cu Heterostructures with SPS to Achieve a Balance of Strength and Plasticity. Metals 2022, 12, 1093. https://doi.org/10.3390/met12071093
Ai W, Yu Z, Lin Y. Synthesis of Ni-Cu Heterostructures with SPS to Achieve a Balance of Strength and Plasticity. Metals. 2022; 12(7):1093. https://doi.org/10.3390/met12071093
Chicago/Turabian StyleAi, Wuqiang, Zewen Yu, and Yaojun Lin. 2022. "Synthesis of Ni-Cu Heterostructures with SPS to Achieve a Balance of Strength and Plasticity" Metals 12, no. 7: 1093. https://doi.org/10.3390/met12071093
APA StyleAi, W., Yu, Z., & Lin, Y. (2022). Synthesis of Ni-Cu Heterostructures with SPS to Achieve a Balance of Strength and Plasticity. Metals, 12(7), 1093. https://doi.org/10.3390/met12071093