Numerical Simulation and Experimental Measurement of Residual Stresses in a Thick-Walled Buried-Arc Welded Pipe Structure
Abstract
:1. Introduction
2. Buried-Arc Welding Technology in Brief
3. Experimental Investigations
4. Welding Numerical Simulation
5. Results and Discussion
6. Conclusions
- Temperature histories after the start of welding become steady very quickly along the welding path.
- Axial residual stress at the weld centerline on the outer surface are compressive. As they move away from the welds, they become tensile and disappear towards the ends of the pipe. The comparison of numerically and experimentally obtained stresses showed very good agreement.
- Axial residual stress at the weld centerline on the outside surface are tensile. As they move away from the welds, they become compressive and disappear towards the ends of the pipe.
- Hoop stresses on the outer surface of welded pipes very quickly change the sign of stress and disappear towards the ends of the pipe. The deviation in the measured and numerically calculated results is greater compared to axial residual stresses due to sudden changes in hoop stresses in the weld zone.
- Hoop stresses on the inner surface of welded pipes in the weld zone are tensile and as they move away from the welds become pressured and disappear towards the ends of the pipe.
- Through the thickness change of residual stresses from compressive to tensile, it is almost linear if the effects at the outer or inner surface of the welded model are neglected.
- Hoop stresses through the thickness are always tensile.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghafouri, M.; Ahola, A.; Ahn, J.; Björk, T. Welding-induced stresses and distortion in high-strength steel T-joints. J. Constr. Steel Res. 2022, 189, 107088. [Google Scholar] [CrossRef]
- Hirohata, M.; Nozawa, S.; Tokumaru, Y. Verification of FEM simulation by using shell elements for fillet welding process. Int. J. Interact. Des. Manuf. 2022; in press. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, Y.; Wu, J.; Wu, F. A fuzzy finite element model based on the eigenstrain method to evaluate the welding distortion of T-joint fillet welded structures. J. Manuf. Process. 2022, 77, 451–462. [Google Scholar] [CrossRef]
- Kik, T.; Moravec, J.; Švec, M. Experiments and Numerical Simulations of the Annealing Temperature Influence on the Residual Stresses Level in S700MC Steel Welded Elements. Materials 2020, 13, 5289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, W.; Zhao, X.; Tu, S.T. Fatigue life of a dissimilar welded joint considering the weld residual stress: Experimental and finite element simulation. Int. J. Fatigue 2018, 109, 182–190. [Google Scholar] [CrossRef]
- Xin, H.; Correia, J.A.F.O.; Veljkovic, M.; Berto, F.; Manuel, L. Residual stress effects on fatigue life prediction using hardness measurements for butt-welded joints made of high strength steels. Int. J. Fatigue 2021, 147, 106175. [Google Scholar] [CrossRef]
- Gao, H.; Wu, S.; Wu, Q.; Li, B.; Gao, Z.; Zhang, Y.; Mo, S. Experimental and Simulation Investigation on Thermal-Vibratory Stress Relief Process for 7075 Aluminium Alloy. Mater. Des. 2020, 195, 108954. [Google Scholar] [CrossRef]
- Song, H.; Gao, H.; Wu, Q.; Zhang, Y. Residual stress relief mechanisms of 2219 Al–Cu alloy by thermal stress relief method. Rev. Adv. Mater. Sci. 2022, 61, 102–116. [Google Scholar] [CrossRef]
- Yang, Y.P. Understanding of Vibration Stress Relief with Computation Modeling. J. Mater. Eng. Perform. 2009, 18, 856–862. [Google Scholar] [CrossRef]
- Gao, H.-J.; Zhang, Y.-D.; Wu, Q.; Song, J. Experimental Investigation on the Fatigue Life of Ti-6Al-4V Treated by Vibratory Stress Relief. Metals 2017, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- Sepe, R.; Greco, A.; De Luca, A.; Caputo, F.; Berto, F. Influence of thermo-mechanical material properties on the structural response of a welded butt-joint by FEM simulation and experimental tests. Forces Mech. 2021, 4, 100018. [Google Scholar] [CrossRef]
- Lorza, R.L.; García, R.E.; Martinez, R.F.; Martinez Calvo, M.Á. Using Genetic Algorithms with Multi-Objective Optimization to Adjust Finite Element Models of Welded Joints. Metals 2018, 8, 230. [Google Scholar] [CrossRef] [Green Version]
- Busari, Y.; Manurung, Y.H.; Shuaib-Babata, Y.L.; Ahmad, S.N.; Taufek, T.; Leitner, M.; Dizon, J.R.C.; Muhammad, N.; Mohamed, M.A. Experimental validation on multi-pass weld distortion behavior of structural offshore steel HSLA S460 using FE based inherent strain and thermo-mechanical method. MRS Commun. 2022, 12, 104–111. [Google Scholar] [CrossRef]
- Baruah, S.; Sarkar, S.; Singh, I.V.; Mishra, B.K. A computational framework based on FEA, ML and GA for estimation of welding residual stresses. Finite Elem. Anal. Des. 2022, 205, 103753. [Google Scholar] [CrossRef]
- Teng, T.-L.; Chang, P.-H. Three-dimensional thermomechanical analysis of circumferentially welded thin-walled pipes. Int. J. Pres. Ves. Pip. 1998, 75, 237–247. [Google Scholar] [CrossRef]
- Deng, D.; Murakawa, H. Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25Cr–1Mo steel pipes. Comp. Mater. Sci. 2008, 43, 681–695. [Google Scholar] [CrossRef]
- Giri, A.; Mahapatra, M.M.; Sharma, K.; Singh, P.K. A Study on the Effect of Weld Groove Designs on Residual Stresses in SS 304LN Thick Multipass Pipe Welds. Int. J. Steel. Struct. 2017, 17, 65–75. [Google Scholar] [CrossRef]
- Zhao, M.; Wei, F.; Huang, W.Q.; Lei, Y. Experimental and numerical investigation on combined girth welding of API X80 pipeline steel. Sci. Technol. Weld. Join. 2015, 20, 622–630. [Google Scholar] [CrossRef]
- Wu, C.; Lee, C.; Kim, J.-W. Numerical simulation of bending deformation induced by multi-seam welding of a steel-pipe structure. J. Mech. Sci. Technol. 2020, 34, 2121–2131. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Fang, H.; Ma, N. Characteristics of welding distortion and residual stresses in thin-walled pipes by solid-shell hybrid modelling and experimental verification. J. Manuf. Process. 2021, 69, 532–544. [Google Scholar] [CrossRef]
- Perić, M.; Garašić, I.; Tonković, Z.; Vuherer, T.; Nižetić, S.; Dedić-Jandrek, H. Numerical Prediction and Experimental Validation of Temperature and Residual Stress Distributions in Buried-Arc Welded Thick Plates. Int. J. Energy Res. 2019, 43, 3590–3600. [Google Scholar] [CrossRef]
- Perić, M.; Nižetić, S.; Garašić, I.; Gubeljak, N.; Vuherer, T.; Tonković, Z. Numerical Calculation and Experimental Measurement of Temperatures and Welding Residual Stresses in a Thick-Walled T-Joint Structure. J. Therm. Anal. Calorim. 2020, 141, 313–322. [Google Scholar] [CrossRef]
- Perić, M.; Nižetić, S.; Tonković, Z.; Garašić, I.; Horvat, I.; Boras, I. Numerical Simulation and Experimental Investigation of Temperature and Residual Stress Distributions in a Circular Patch Welded Structure. Energies 2020, 13, 5423. [Google Scholar] [CrossRef]
- Sepe, R.; Giannella, V.; Greco, A.; De Luca, A. FEM Simulation and Experimental Tests on the SMAW Welding of a Dissimilar T-Joint. Metals 2021, 11, 1016. [Google Scholar] [CrossRef]
- Deng, D.; Sun, J.; Dai, D.; Jiang, X. Influence of Accelerated Cooling Condition on Welding Thermal Cycle, Residual Stress, and Deformation in SM490A Steel ESW Joint. J. Mater. Eng. Perform. 2015, 24, 3487–3501. [Google Scholar] [CrossRef]
- Hwang, S.-Y.; Kim, Y.; Lee, J.-H. Finite element analysis of residual stress distribution in a thick plate joined using two-pole tandem electro-gas welding. J. Mater. Process. Technol. 2016, 229, 349–360. [Google Scholar] [CrossRef]
- Sun, J.; Liu, X.; Tong, Y.; Deng, D. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding. Mater. Des. 2014, 63, 519–530. [Google Scholar] [CrossRef]
- Zhao, H.; Niu, W.; Zhang, B.; Lei, Y.; Kodama, M.; Ishide, K. Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding. J. Phys. D Appl. Phys. 2011, 44, 485302. [Google Scholar] [CrossRef]
- Sisodia, R.P.S.; Gáspár, M. An Approach to Assessing S960QL Steel Welded Joints Using EBW and GMAW. Metals 2022, 12, 678. [Google Scholar] [CrossRef]
- Baba, H.; Era, T.; Ueyama, T.; Tanaka, M. Single pass full penetration joining for heavy plate steel using high current GMA process. Weld World 2017, 61, 963–969. [Google Scholar] [CrossRef]
- Lin, J.; Ma, N.; Lei, Y.; Murakawa, H. Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method. J. Mater. Process. Technol. 2017, 243, 387–394. [Google Scholar] [CrossRef]
- Perić, M.; Tonković, Z.; Rodić, A.; Surjak, M.; Garašić, I.; Boras, I.; Švaić, S. Numerical Analysis and Experimental Investigation of Welding Residual Stresses and Distortions in a T-Joint Fillet Weld. Mater. Des. 2014, 53, 1052–1063. [Google Scholar] [CrossRef]
- Deng, D.; Kiyoshima, S. Numerical simulation of welding temperature field, residual stress and deformation induced by electro slag welding. Comp. Mater. Sci. 2012, 62, 23–34. [Google Scholar] [CrossRef]
- Perić, M.; Tonković, Z.; Karšaj, I.; Stamenković, D. A simplified engineering method for a T-joint welding simulation. Therm. Sci. 2018, 22, S867–S873. [Google Scholar] [CrossRef] [Green Version]
- Trupiano, S.; Belardi, V.G.; Fanelli, P.; Gaetani, L.; Vivio, F. A novel modeling approach for multi-passes butt- welded plates. J. Therm. Stress. 2021, 44, 829–849. [Google Scholar] [CrossRef]
- Ghafouri, M.; Ahola, A.; Ahn, J.; Björk, T. Numerical and experimental investigations on the welding residual stresses and distortions of the short fillet welds in high strength steel plates. Eng. Struct. 2022, 260, 114269. [Google Scholar] [CrossRef]
- Deng, D. FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects. Mater. Des. 2009, 30, 359–366. [Google Scholar] [CrossRef]
- Feng, G.; Wang, H.; Wang, Z.; Deng, D. Numerical Simulation of Residual Stress and Deformation in Wire Arc Additive Manufacturing. Crystals 2022, 12, 803. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, G.; Pu, X.; Deng, D. Influence of welding sequence on residual stress distribution and deformation in Q345 steel H-section butt-welded joint. J. Mater. Res. Technol. 2021, 13, 144–153. [Google Scholar] [CrossRef]
- Perić, M.; Seleš, K.; Tonković, Z.; Lovrenić-Jugović, M. Numerical Simulation of Welding Distortions in Large Structures with a Simplified Engineering Approach. Open Phys. 2019, 17, 719–730. [Google Scholar] [CrossRef]
- Perić, M.; Tonković, Z.; Maksimović, K.S.; Stamenković, D. Numerical Analysis of Residual Stresses in a T-Joint Fillet Weld Using a Submodeling Technique. FME Trans. 2019, 47, 183–189. [Google Scholar] [CrossRef]
- Deng, D.; Murakawa, H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comp. Mater. Sci. 2006, 37, 269–277. [Google Scholar] [CrossRef]
Welding Current I | Welding Voltage U | Wire Diameter | Welding Time Duration | Shielding Gas Composition | Shielding Gas Flow |
---|---|---|---|---|---|
540 A | 40 V | 1.6 mm | 68 s | 100 CO2 | 25 L/min |
C | Si | Mn | P | S | N | Cu | Cr | Ni | Mo | Al | V | Ti | Nb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.17 | 0.24 | 1.25 | 0.016 | 0.006 | 0.008 | 0.23 | 0.06 | 0.1 | 0.11 | 0.0032 | 0.005 | 0.025 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perić, M.; Garašić, I.; Gubeljak, N.; Tonković, Z.; Nižetić, S.; Osman, K. Numerical Simulation and Experimental Measurement of Residual Stresses in a Thick-Walled Buried-Arc Welded Pipe Structure. Metals 2022, 12, 1102. https://doi.org/10.3390/met12071102
Perić M, Garašić I, Gubeljak N, Tonković Z, Nižetić S, Osman K. Numerical Simulation and Experimental Measurement of Residual Stresses in a Thick-Walled Buried-Arc Welded Pipe Structure. Metals. 2022; 12(7):1102. https://doi.org/10.3390/met12071102
Chicago/Turabian StylePerić, Mato, Ivica Garašić, Nenad Gubeljak, Zdenko Tonković, Sandro Nižetić, and Krešimir Osman. 2022. "Numerical Simulation and Experimental Measurement of Residual Stresses in a Thick-Walled Buried-Arc Welded Pipe Structure" Metals 12, no. 7: 1102. https://doi.org/10.3390/met12071102
APA StylePerić, M., Garašić, I., Gubeljak, N., Tonković, Z., Nižetić, S., & Osman, K. (2022). Numerical Simulation and Experimental Measurement of Residual Stresses in a Thick-Walled Buried-Arc Welded Pipe Structure. Metals, 12(7), 1102. https://doi.org/10.3390/met12071102