Anisotropic Elastic and Thermal Properties of M2InX (M = Ti, Zr and X = C, N) Phases: A First-Principles Calculation
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Single-Crystal Structural Properties
3.2. Elastic Properties
3.3. Elastic Moduli
3.4. Anisotropy in Elastic Moduli
3.5. Debye Temperatures and Anisotropy of Sound Velocities
3.6. Thermal Properties
3.7. Electronic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, X.K.; He, X.D.; Li, Y.B. Cyclic oxidation of Ti3AlC2 at 1000–1300 °C in air. Corros. Sci. 2011, 53, 290–295. [Google Scholar] [CrossRef]
- Lin, Z.J.; Li, M.S.; Wang, J.Y.; Zhou, Y.C. High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 2007, 55, 6182–6191. [Google Scholar] [CrossRef]
- Zhou, A.G.; Barsoum, M.W. Kinking nonlinear elastic deformation of Ti3AlC2, Ti2AlC, Ti3Al (C0.5, N0.5) 2 and Ti2Al (C0.5, N0.5). J. Alloys Compd. 2010, 498, 62–70. [Google Scholar] [CrossRef]
- Qian, X.; He, X.; Li, Y.; Sun, Y.; Zhu, C. Improving the Cyclic-Oxidation Resistance of Ti3AlC2 at 550 °C and 650 °C by Preoxidation at 1100 °C. Int. J. Appl. Ceram. Tec. 2010, 6, 760–765. [Google Scholar] [CrossRef]
- Eriksson, A.O.; Zhu, J.Q.; Ghafoor, N.; Jensen, J.; Greczynski, G.; Johansson, M.P.; Rosén, J. Ti–Si–C–N thin films grown by reactive arc evaporation from Ti3SiC2 cathodes. J. Mater. Res. 2011, 26, 874–881. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.P.; Qian, X.K.; Wu, H.Y.; Lei, J.; Song, Y.; He, X.; Zhou, Y. Cyclic Oxidation of Ternary Layered Ti2AlC at 600–1000 °C in Air. Int. J. Appl. Ceram. Tec. L. 2015, 12, 403–410. [Google Scholar] [CrossRef]
- Barsoum, M.W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid. State. Ch. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 2010, 518, 1851–1878. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Li, Y.; Sun, Y.; He, X.; Zhu, C. Cyclic oxidation behavior of TiC/Ti3AlC2 composites at 550–950 °C in air. J. Alloys Compd. 2010, 491, 386–390. [Google Scholar] [CrossRef]
- Whittle, K.R.; Blackford, M.G.; Aughterson, R.D.; Moricca, S.; Lumpkin, G.R.; Riley, D.P.; Zaluzec, N.J. Radiation tolerance of Mn+ 1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Mater. 2010, 58, 4362. [Google Scholar] [CrossRef]
- Utili, M.; Agostini, M.; Coccoluto, G.; Lorenzini, E. Ti3SiC2 as a candidate material for lead cooled fast reactor. Nucl. Eng. Des. 2011, 241, 1295–1300. [Google Scholar] [CrossRef]
- Yang, Z.J.; Tang, L.; Guo, A.M.; Cheng, X.L.; Zhu, Z.H.; Yang, X.D. Origin of c-axis ultraincompressibility of Zr2InC above 70 GPa via first-principles. J. Appl. Phys. 2013, 114, 083506. [Google Scholar] [CrossRef]
- Bortolozo, A.D.; Serrano, G.; Serquis, A.; Rodrigues, D., Jr.; Santos, C.A.M.D.; Fisk, Z.; Machado, A.J.S. Superconductivity at 7.3 K in Ti2InN. Solid State Commun. 2010, 150, 1364–1366. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.M.; Music, D.; Ahuja, R.; Schneider, J.M. Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides, Schneider. Phys. Rev. B 2005, 71, 193402. [Google Scholar] [CrossRef]
- Bao, L.; Qu, D.; Kong, Z.; Duan, Y. Predictions of structural, electronic, mechanical, and thermodynamic properties of TMBCs (TM= Ti, Zr, and Hf) ceramics. J. Am. Ceram. Soc. 2020, 103, 5232–5247. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pichard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Mater. 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Pacheco-Kato, J.C.; del Campo, J.M.; Gázquez, J.L.; Trickey, S.B.; Vela, A. A PW91-like exchange with a simple analytical form. Chem. Phys. Lett. 2016, 651, 268–273. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671. [Google Scholar] [CrossRef] [PubMed]
- Barsoum, M.W.; Golczewski, J.; Seifert, H.J. Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC. J. Alloys Compd. 2002, 340, 173–179. [Google Scholar] [CrossRef]
- Wu, H.; Qian, X.; Zhu, H. First-principles study of the structural, electronic and elastic properties of ternary Zr2AN (A = Ga, In and Tl). Comp. Mater. Sci. 2014, 84, 103–107. [Google Scholar] [CrossRef]
- Horlait, D.; Middleburgh, S.; Chroneos, A.; Lee, W.E. Synthesis and DFT investigation of new bismuth-containing MAX phases. Sci. Rep. 2016, 6, 18829. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Bao, L.; Wang, Y.; Wu, Y.; Duan, Y.; Peng, M. Explorations of electronic, elastic and thermal properties of tetragonal TM4N3 (TM= V, Nb and Ta) nitrides. Mater. Today Commun. 2021, 26, 101723. [Google Scholar] [CrossRef]
- Karki, B.B.; Ackland, G.; Crian, J. Elastic instabilities in crystals from ab initio stress- strain relations. J. Phys. Condens. Matter 1997, 9, 8579–8589. [Google Scholar] [CrossRef] [Green Version]
- Shou, H.; Duan, Y. Anisotropic elasticity and thermal conductivities of (α, β, γ)-LiAlSi2O6 from the first-principles calculation. J. Alloys Compd. 2018, 756, 40–49. [Google Scholar] [CrossRef]
- Zhang, X.H.; Luo, X.G.; Han, J.C.; Li, J.P.; Han, W.B. Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations. Comput. Mater. Sci. 2008, 4, 411–421. [Google Scholar] [CrossRef]
- Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. J. Phys. Condeens. Mat. 2014, 26, 505503. [Google Scholar] [CrossRef]
- Lapauw, T.; Lambrinou, K.; Cabioc’h, T.; Halim, J.; Lu, J.; Pesach, A.; Rivin, O.; Ozeri, O.; Caspi, E.N.; Hultman, L.; et al. Synthesis of the new MAX phase Zr2AlC. J. Eur. Ceram. Soc. 2016, 36, 1847–1853. [Google Scholar] [CrossRef] [Green Version]
- Medkour, Y.; Bouhemadou, A.; Roumili, A. Structural and electronic properties of M2InC (M = Ti, Zr, and Hf). Solid State Commun. 2008, 148, 459–463. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal elastic anisotropy index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, L. Weak elastic anisotropy. Geophysics 1986, 51, 1954–1966. [Google Scholar] [CrossRef]
- Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 1998, 84, 4891–4904. [Google Scholar] [CrossRef]
- Ledbetter, M.H. Elastic properties of zinc: A compilation and a review. J. Phys. Chem. Ref. Data 1977, 6, 1181–1203. [Google Scholar] [CrossRef] [Green Version]
- Nye, J.F. Physical properties of crystals. Mater. Today 2007, 10, 53. [Google Scholar]
- Hearmon, R.F.S.; Maradudin, A.A. An introduction to applied anisotropic elasticity. Phys. Today 1961, 14, 48. [Google Scholar] [CrossRef]
- Li, B.; Duan, Y.; Peng, M. Theoretical insights on elastic anisotropy and thermal anisotropy of TM5Al3C (TM= Zr, Hf, and Ta) carbides. Vacuum 2022, 200, 110989. [Google Scholar] [CrossRef]
- Peng, M.; Wang, R.; Wu, Y. Elastic anisotropies, thermal conductivities and tensile properties of MAX phases Zr2AlC and Zr2AlN: A first-principles calculation. Vacuum 2022, 196, 110715. [Google Scholar] [CrossRef]
- Bao, W.; Liu, D.; Duan, Y. A first-principles prediction of anisotropic elasticity and thermal properties of potential superhard WB3. Ceram. Int. 2018, 44, 14053–14062. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solid. 1963, 2490, 9–17. [Google Scholar] [CrossRef]
- Arab, F.; Sahraoui, F.A.; Haddadi, K.; Bouhemadou, A.; Louail, L. Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: An ab initio study. Phase Transit. 2016, 89, 480–513. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.; Duan, Y.H.; Huang, B.; Peng, M.J. Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. J. Alloys Compd. 2015, 630, 202–208. [Google Scholar] [CrossRef]
- Benayad, N.; Rached, D.; Khenata, R. First principles study of the structural, elastic and electronic properties of Ti2InC and Ti2InN. Mod. Phys. Lett. B 2011, 25, 747–761. [Google Scholar] [CrossRef]
- Yang, Z.J.; Li, J.; Linghu, R.F.; Cheng, X.L.; Yang, X.D. First-principle investigations on the structural dynamics of Ti2GaN. J. Alloys Compd. 2013, 574, 573–579. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Li, Y.; Zhu, C.; Li, M. Ab initio calculations for properties of MAX phases Ti2InC, Zr2InC, and Hf2InC. Solid State Commun. 2009, 149, 564–566. [Google Scholar] [CrossRef]
- Morelli, D.T.; Slack, G.A.; Shinde, S.L.; Goela, J.S. (Eds.) High Thermal Conductivity Materials; Springer: New York, NY, USA, 2006. [Google Scholar]
- Julian, C.L. Theory of heat conduction in rare-gas crystals. Phys. Rev. 1965, 137, A128. [Google Scholar] [CrossRef]
- Barsoum, M.W. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides; John Wiley & Sons: Weinheim, Germany, 2013. [Google Scholar]
- Li, S.; Sun, W.; Luo, Y. Pushing the limit of thermal conductivity of MAX borides and MABs. J. Mater. Sci. Technol. 2021, 97, 87–106. [Google Scholar] [CrossRef]
- Feng, J.; Xiao, B.; Wan, C.L.; Qu, Z.X.; Huang, Z.C.; Chen, J.C.; Zhou, R.; Pan, W. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 2011, 59, 1742–1760. [Google Scholar] [CrossRef]
- Yang, A.; Bao, L.; Peng, M.; Duan, Y. Explorations of elastic anisotropies and thermal properties of the hexagonal TMSi2 (TM = Cr, Mo, W) silicides from first-principles calculations. Mater. Today Commun. 2021, 27, 102474. [Google Scholar] [CrossRef]
Lattice Parameters (Å) | V (Å3) | Ec | ∆Hf | Ref. | ||
---|---|---|---|---|---|---|
a | c | |||||
Ti2lnC | 3.15 | 14.18 | 121.67 | −7.81 | −0.665 | This work |
3.14 | 14.17 | 120.74 | −0.669 | Exp. [22] | ||
Ti2lnN | 3.10 | 14.05 | 116.76 | −8.02 | −0.667 | This work |
−8.01 | Exp. [13] | |||||
Zr2lnC | 3.36 | 15.04 | 147.47 | −8.30 | −0.690 | This work |
3.35 | 15.04 | 146.62 | Theo. [12] | |||
3.349 | 14.91 | 144.8 | Theo. [12] | |||
3.358 | 15.09 | 147.437 | Theo. [12] | |||
Zr2AlC | −0.40 | Theo. [24] | ||||
Zr2BiC | −4.17 | Theo. [24] | ||||
Zr2lnN | 3.31 | 14.92 | 141.25 | −8.51 | −0.751 | This work |
−8.12 | Theo. [23] |
C11 | C33 | C44 | C66 | C12 | C13 | Ref. | |
---|---|---|---|---|---|---|---|
Ti2lnC | 286 | 244 | 90 | 112 | 64 | 53 | This work |
285 | 243 | 83 | 111 | 64 | 52 | Theo. [22] | |
Ti2lnN | 249 | 228 | 87 | 87 | 54 | 99 | This work |
Zr2lnC | 256 | 241 | 82 | 96 | 64 | 96 | This work |
258 | 237 | 83 | 64 | 88 | Theo. [12] | ||
Zr2lnN | 242 | 225 | 89 | 83 | 57 | 88 | This work |
237 | 199 | 76 | 55 | 82 | Theo. [23] |
BV | BR | BH | GV | GR | GH | BH/GH | E | ν | Ref. | |
---|---|---|---|---|---|---|---|---|---|---|
Ti2lnC | 128.2 | 127.2 | 127.7 | 101.4 | 100.5 | 100.9 | 1.26 | 239.5 | 0.187 | This work |
Ti2lnN | ||||||||||
Zr2lnC | ||||||||||
Zr2lnN | ||||||||||
127 | 232.04 | 0.176 | Theo. [31] | |||||||
Ti2lnN | 123.4 | 122.7 | 123.1 | 78.6 | 77.8 | 82.7 | 1.5 | 198.1 | 0.226 | This work |
Ti2lnN | ||||||||||
Zr2lnC | ||||||||||
Zr2lnN | ||||||||||
121.78 | Theo. [13] | |||||||||
Zr2lnC | 137.4 | 137.3 | 137.4 | 89.5 | 88.5 | 89 | 1.54 | 216.1 | 0.217 | This work |
Ti2lnN | ||||||||||
Zr2lnC | ||||||||||
Zr2lnN | ||||||||||
126.03 | Exp. [12] | |||||||||
Zr2lnN | 134.8 | 134.8 | 134.8 | 82.9 | 82.2 | 82.5 | 1.63 | 205.7 | 0.245 | This work |
Ti2lnN | ||||||||||
Zr2lnC | ||||||||||
Zr2lnN | ||||||||||
134 | 79 | 196 | Theo. [23] |
AU | Acomp (%) | Ashear (%) | A1 | A2 | A3 | |
---|---|---|---|---|---|---|
Ti2lnC Ti2lnN Zr2lnC Zr2lnN | 0.053 | 0.004 | 0.005 | 0.851 | 0.851 | 1.000 |
Ti2lnN Ti2lnN Zr2lnC Zr2lnN | 0.059 | 0.003 | 0.006 | 1.622 | 1.622 | 1.000 |
Zr2lnC Ti2lnN Zr2lnC Zr2lnN | 0.034 | 0.001 | 0.004 | 1.072 | 1.072 | 1.000 |
Zr2lnN Ti2lnN Zr2lnC Zr2lnN | 0.043 | 0.001 | 0.006 | 1.225 | 1.225 | 1.000 |
Ti2lnC | Ti2lnN | Zr2lnC | Zr2lnN | ||
---|---|---|---|---|---|
E | [1] | 304 | 205 | 211 | 174 |
[10] | 309 | 216 | 215 | 174 | |
[100] | 309 | 216 | 215 | 180 | |
[100]/[1] | 1.02 | 1.05 | 1.02 | 1.04 | |
B | [1] | 160 | 86 | 156 | 163 |
[10] | 172 | 163 | 160 | 170 | |
[100] | 172 | 163 | 160 | 170 | |
[100]/[1] | 1.08 | 1.90 | 1.03 | 1.04 | |
G | [1] | 122 | 118 | 112 | 80 |
[10] | 125 | 122 | 115 | 84 | |
[100] | 125 | 122 | 115 | 84 | |
[100]/[1] | 1.02 | 1.03 | 1.03 | 1.05 |
TM5Al3C | ρ (g/cm3) | vl(km/s) | vt (km/s) | vm(km/s) | θD (K) | Ref. |
---|---|---|---|---|---|---|
Ti2lnC | 6.079 | 6.738 | 4.271 | 4.697 | 564 | This work |
Ti2lnN | 6.389 | 6.013 | 3.555 | 3.938 | 480 | This work |
Zr2lnC | 6.949 | 6.066 | 3.573 | 3.960 | 446 | This work |
Zr2lnN | 7.302 | 5.791 | 3.362 | 3.731 | 426 | This work |
5.770 | 3.297 | 423 | Theo. [23] |
[100] | [1] | |||||
---|---|---|---|---|---|---|
[100]vl | [10]vt1 | [1]vt2 | [1]vl | [100]vt1 | [10]vt2 | |
Ti2lnC | 4289 | 6858 | 3846 | 6331 | 3846 | 3846 |
Ti2lnN | 3906 | 5985 | 3683 | 5974 | 3683 | 3683 |
Zr2lnC | 3715 | 6070 | 3431 | 5888 | 3431 | 3431 |
Zr2lnN | 3564 | 5760 | 3295 | 5555 | 3295 | 3295 |
δ | Mav | γ | n | Aγ | kph (300 K) | kph (1300 K) | kmin | |
---|---|---|---|---|---|---|---|---|
Ti2lnC | 2.48 | 55.66 | 1.16 | 8.00 | 3.34 | 51.48 | 11.88 | 1.23 |
Ti2lnN | 2.44 | 56.16 | 1.41 | 8.00 | 3.24 | 20.43 | 4.72 | 1.12 |
Zr2lnC | 2.60 | 77.31 | 1.43 | 8.00 | 3.23 | 23.59 | 5.44 | 0.96 |
Zr2lnN | 2.64 | 77.81 | 1.48 | 8.00 | 3.21 | 19.42 | 4.48 | 0.94 |
Atom | Charge Number | Charge | Bond | BP | Length(Å) | |||||
---|---|---|---|---|---|---|---|---|---|---|
s | p | d | f | Total | ||||||
Ti2lnC | Ti | 2.18 | 6.79 | 2.66 | 0.00 | 11.62 | 0.38 | Ti-C | 1.04 | 2.12 |
In | 1.11 | 1.94 | 9.97 | 0.00 | 13.02 | −0.02 | ||||
C | 1.46 | 3.27 | 0.00 | 0.00 | 4.73 | −0.73 | ||||
Ti2lnN | Ti | 2.19 | 6.77 | 2.69 | 0.00 | 11.65 | 0.35 | Ti-N | 0.76 | 2.10 |
In | 1.05 | 1.97 | 9.97 | 0.00 | 12.99 | 0.01 | ||||
N | 1.68 | 4.04 | 0.00 | 0.00 | 5.71 | −0.71 | ||||
Zr2lnC | Zr | 2.28 | 6.63 | 2.68 | 0.00 | 11.59 | 0.41 | Zr-C | 1.06 | 2.30 |
In | 1.11 | 1.93 | 9.98 | 0.00 | 13.02 | −0.02 | ||||
C | 1.49 | 3.31 | 0.00 | 0.00 | 4.80 | −0.80 | ||||
Zr2lnN | Zr | 2.30 | 6.63 | 2.72 | 0.00 | 11.65 | 0.35 | Zr-N | 0.69 | 2.27 |
In | 1.03 | 1.92 | 9.97 | 0.00 | 12.92 | 0.08 | ||||
N | 1.70 | 4.07 | 0.00 | 0.00 | 5.77 | −0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Duan, Y.; Peng, M.; Shen, L.; Qi, H. Anisotropic Elastic and Thermal Properties of M2InX (M = Ti, Zr and X = C, N) Phases: A First-Principles Calculation. Metals 2022, 12, 1111. https://doi.org/10.3390/met12071111
Li B, Duan Y, Peng M, Shen L, Qi H. Anisotropic Elastic and Thermal Properties of M2InX (M = Ti, Zr and X = C, N) Phases: A First-Principles Calculation. Metals. 2022; 12(7):1111. https://doi.org/10.3390/met12071111
Chicago/Turabian StyleLi, Bo, Yonghua Duan, Mingjun Peng, Li Shen, and Huarong Qi. 2022. "Anisotropic Elastic and Thermal Properties of M2InX (M = Ti, Zr and X = C, N) Phases: A First-Principles Calculation" Metals 12, no. 7: 1111. https://doi.org/10.3390/met12071111
APA StyleLi, B., Duan, Y., Peng, M., Shen, L., & Qi, H. (2022). Anisotropic Elastic and Thermal Properties of M2InX (M = Ti, Zr and X = C, N) Phases: A First-Principles Calculation. Metals, 12(7), 1111. https://doi.org/10.3390/met12071111