Thermodynamic Properties and Equation of State for Solid and Liquid Aluminum
Abstract
:1. Introduction
2. Physicochemical Model
2.1. Thermodynamic Functions
2.2. Molar Volume
2.3. Isothermal Bulk Modulus
2.4. Melting Curve
3. Selected Experimental Data
3.1. Thermodynamic Properties
3.2. Thermodynamic Properties of Solid Aluminum
3.2.1. Molar Volume
3.2.2. Thermal Expansion
3.2.3. Isothermal Compressibility
3.2.4. Adiabatic Bulk Modulus
3.3. Thermophysical Properties of Liquid Aluminum
3.3.1. Thermal Expansion
3.3.2. Sound Velocity
3.4. Melting Curve
4. Calculation Procedure
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akahama, Y.; Nishimura, M.; Kinoshita, K.; Kawamura, H.; Ohishi, Y. Evidence of a fcc-hcp Transition in Aluminum at Multimegabar Pressure. Phys. Rev. Lett. 2006, 96, 045505. [Google Scholar] [CrossRef]
- Baker, E.L.; Capellos, C.; Stiel, L. JAGUAR Procedures for Detonation Properties of Aluminized Explosives. In Proceedings of the 12th International Symposium on Detonation, San Diego, CA, USA, 11–16 August 2002; pp. 195–202. [Google Scholar]
- Baker, E.L.; Stiel, L.I. JAGUAR Calculations of Detonation Properties for Aluminized Explosives. In Proceedings of the Insensitive Munitions & Energetic Materials Technology Symposium, San Antonio, TX, USA, 27–30 November 2000; pp. 265–272. [Google Scholar]
- Kozyrev, N.V.; Gordeev, V.V. Thermodynamic characterization and equation of state for solid and liquid lead. Metals 2022, 12, 16. [Google Scholar] [CrossRef]
- Boehler, R.; Ross, M. Melting curve of aluminum in a diamond cell to 0.8 Mbar: Implications for iron. Earth Planet. Sci. Lett. 1997, 153, 223–227. [Google Scholar] [CrossRef]
- Chase, M.W.; Ansara, I.; Dinsdale, A.; Eriksson, G.; Grimvall, G.; Hoglund, H.; Yokokawa, H. Group 1: Heat capacity models for crystalline phases from 0 K to 6000 K. CALPHAD 1995, 19, 437–447. [Google Scholar]
- Voronin, G.F.; Kutsenok, I.B. Universal method for approximating the standard thermodynamic functions of solids. J. Chem. Eng. Data 2013, 58, 2083–2094. [Google Scholar] [CrossRef]
- Jacobson, P.; Stoupin, S. Thermal expansion coefficient of diamond in a wide temperature range. Diam. Relat. Mat. 2019, 97, 107469. [Google Scholar] [CrossRef]
- Buyco, E.H.; Davis, F.E. Specific heat of aluminum from zero to its melting temperature and beyond. J. Chem. Eng. Data 1970, 15, 518–523. [Google Scholar] [CrossRef]
- Glushko, V. Termodinamicheskie Svoistva Individual’nykh Veshchestv [Thermodynamic Properties of Individual Substances], 3rd ed.; Nauka: Moscow, Russia, 1981; Volume 3, Book 2. (In Russian) [Google Scholar]
- Desai, P.D. Thermodynamic properties of aluminum. Int. J. Thermophys. 1987, 8, 621–638. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1995. [Google Scholar]
- Chase, M.W. NIST-JANAF Thermochemical Tables, 4th ed.; In Journal of physical and chemical reference data, American Chemical Society: Washington, DC, USA, 1998; Volume 9, pp. 1–1951. [Google Scholar]
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead Publishing Ltd.: Cambridge, UK, 2002. [Google Scholar]
- MacDonald, J.R. Review of some experimental and analytical equations of state. Rev. Modern Phys. 1969, 41, 316–349. [Google Scholar] [CrossRef]
- Dymond, J.H.; Malhotra, R. The Tait equation: 100 years on. Int. J. Thermophys. 1988, 9, 941–951. [Google Scholar] [CrossRef]
- Preston-Thomas, H. The international temperature scale of 1990 (ITS-90). Metrologia 1990, 27, 3–10. [Google Scholar] [CrossRef]
- Deffrennes, G.; Oudot, B. A self-consistent model to describe the temperature dependence of the bulk modulus, thermal expansion and molar volume compatible with 3rd generation CALPHAD databases. Calphad 2021, 74, 102291. [Google Scholar] [CrossRef]
- Dinsdale, A.T. SGTE data for pure substances. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Chang, Y.; Oates, W. Materials Thermodynamics; Wiley Series on Processing of Engineering Materials; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Ditmars, D.A.; Plint, C.A.; Shukla, R.C. Aluminum. I. Measurement of the relative enthalpy from 273 to 929 K and derivation of thermodynamic functions for Al(s) from 0 K to its melting point. Int. J. Thermophys. 1985, 6, 499–515. [Google Scholar] [CrossRef]
- Grigoriev, I.S.; Meilikhov, E.Z. Handbook of Physical Quantities; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Ablaster, J.W. Selected Values of the Crystallographic Properties of the Elements; Materials Park-ASM International: Cleveland, OH, USA, 2018. [Google Scholar]
- Touloukian, Y.S.; Kirby, R.K.; Taylor, R.E.; Desai, P.D. Thermal Expansion Metallic Elements and Alloys. In Thermophysical Properties of Matter; The TPRC Data Series; IFI/Plenum: New York, NY, USA, 1975. [Google Scholar]
- Nakashima, P.N.H. The Crystallography of Aluminum and Its alloys. In Encyclopedia of Aluminum and Its Alloys; Totten, G.E., Tiryakioğlu, M., Kessler, O., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 488–586. [Google Scholar]
- Song, W.; Tang, Q.; Su, C.; Chen, X.; Liu, Y. Ultrasonic experimental study on the elasticity of aluminum to 4.1 GPa in multi-anvil apparatus. Physica B 2021, 609, 412891. [Google Scholar] [CrossRef]
- Vaidya, S.N.; Kennedy, G.C. Compressibility of 18 metals to 45 kbar. J. Phys. Chem. Solids 1970, 31, 2329–2345. [Google Scholar]
- Senoo, M.; Mii, H.H.; Fujishiro, I. Lattice compression of Al in hydrostatic environment up to 70 kbar. Jpn. J. Appl. Phys. 1976, 15, 1617–1618. [Google Scholar] [CrossRef]
- Syassen, K.; Holzapfel, W.B. Isothermal compression of Al and Ag to 120 kbar. J. Appl. Phys. 1978, 49, 4427–4430. [Google Scholar] [CrossRef]
- Ming, L.C.; Xiong, D.; Manghnani, M.H. Isothermal compression of Au and Al to 20 GPa. Physica B C 1986, 139–140, 174–176. [Google Scholar] [CrossRef]
- Hanstrom, A.; Lazor, P. High pressure melting and equation of state of aluminium. J. Alloy. Compd. 2000, 305, 209–215. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef]
- Greene, R.G.; Luo, H.H.; Ruoff, A.L. Al as a simple solid: High-pressure study to 220 GPa (2.2 Mbar). Phys. Rev. Lett. 1994, 73, 2075–2078. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, N.; Kinoshita, K.; Akahama, Y.; Kawamura, H. Volume Compression of Mg and Al to Multimegabar Pressure. In Proceedings of the 20th AIRAPT International Conference. Mineralogical Soc. America, Karlsruhe, Germany, 27 June–1 July 2005; T10–P054. p. 278. Available online: http://www.airapt.org/proceedings/Karlsruhe-2005/html/book-of-abstracts.pdf (accessed on 15 July 2022).
- Dewaele, A.; Loubeyre, P.; Occelli, F.; Marie, O.; Mezouar, M. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 2018, 9, 2913. [Google Scholar] [CrossRef] [PubMed]
- Holmes, N.C.; Moriarty, J.A.; Gathers, R.G.; Nellis, W.J. The equation of state of platinum to 660 GPa (6.6 Mbar). J. Appl. Phys. 1989, 66, 2962–2967. [Google Scholar] [CrossRef]
- Gray, D.E. American Institute of Physics Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Al’tshuler, L.V.; Brusnikin, S.E.; Kuz’menkov, E.A. Isotherms and Gruneisen functions for 25 metals. J. Appl. Mech. Tech. Phys. 1987, 28, 129–141. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shockwave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 2007, 75, 024115. [Google Scholar] [CrossRef]
- Kamm, G.N.; Alers, G.A. Low temperature elastic moduli of aluminum. J. Appl. Phys. 1964, 35, 327–330. [Google Scholar] [CrossRef]
- Vallin, J.; Mongy, M.; Salama, K.; Beckman, O. Elastic constants of aluminum. J. Appl. Phys. 1964, 35, 1825–1826. [Google Scholar] [CrossRef]
- Gerlich, D.; Fisher, E.S. The high temperature elastic moduli of aluminum. J. Phys. Chem. Solids 1969, 30, 1197–1205. [Google Scholar] [CrossRef]
- Trappeniers, N.J.; Klooster, P.; Biswas, S.N. Pressure effect on compressibility of aluminum single crystal from −196 to 25 °C. High Press. Sci. Technol. 1979, 1, 108–113. [Google Scholar]
- Lazarus, D. The variation of the adiabatic elastic constants of KC1, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. Phys. Rev. 1949, 76, 545–553. [Google Scholar] [CrossRef]
- Schmunk, R.E.; Smith, C.S. Pressure derivatives of the elastic constants of aluminum and magnesium. J. Phys. Chem. Solids 1959, 9, 100–112. [Google Scholar] [CrossRef]
- Thomas, J.F. Third order elastic constants of aluminum. Phys. Rev. 1968, 175, 955–962. [Google Scholar] [CrossRef]
- Du, X.; Zhao, J.C. Facile measurement of single-crystal elastic constants from polycrystalline samples. NPJ Comput. Mater. 2017, 17, 1–8. [Google Scholar] [CrossRef]
- Sarma, V.P.N.; Reddy, P.J. Third-order elastic constants of aluminium at 80 K. J. Phys. Chem. Solids 1973, 34, 1593–1596. [Google Scholar] [CrossRef]
- Ho, P.S.; Ruoff, A.L. Pressure dependence of the elastic constants for aluminum from 77 to 300 K. J. Appl. Phys. 1969, 40, 3151–3156. [Google Scholar] [CrossRef]
- Sutton, P.M. The variation of the elastic constants of crystalline aluminum with temperature between 63 K and 773 K. Phys. Rev. 1953, 91, 816–821. [Google Scholar] [CrossRef]
- Tallon, J.L.; Wolfenden, A. Temperature dependence of the elastic constants of aluminum. J. Phys. Chem. Solids 1979, 40, 831–837. [Google Scholar] [CrossRef]
- Kinsler, L.E.; Fray, A.R.; Coppens, A.B.; Sanders, J.V. Fundamentals of Acoustics, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Assael, M.J.; Kakosimoset, K.; Banish, R.M.; Brillo, J.; Egry, I.; Brooks, R.; Quested, P.N.; Mills, K.C.; Nagashima, A.; Sato, Y.Y.; et al. Reference data for the density and viscosity of liquid aluminum and liquid iron. J. Phys. Chem. Ref. Data 2006, 35, 285–300. [Google Scholar] [CrossRef]
- Iida, I.; Guthrie, R.I.L. The Thermophysical Properties of Metallic Liquids; Oxford University Press: Oxford, UK, 2015; Volume 2. [Google Scholar]
- Glazov, V.M.; Chistyakov, Y.D. On the temperature dependence of aluminum viscosity. Izvestyia Akad. Nauk. USSR. Otd. Tekhnicheskikh Nauk. 1958, 7, 141–142. (In Russian) [Google Scholar]
- Goltsova, E.I. Experimental density measurement of liquid aluminum up to 1500 °C. High Temp. 1965, 3, 483–486. Available online: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=4140&option_lang=eng (accessed on 10 May 2022). (In Russian).
- Ayushina, G.D.; Levin, E.S.; Gel’d, P.V. The effects of temperature and composition of densities and surface energies of Fe-Al alloys. Russ. J. Phys. Chem. A 1968, 42, 2799–2804. (In Russian) [Google Scholar]
- Yatsenko, S.P.; Kononenko, V.I.; Sukhman, A.L. Experimental studies on temperature-dependent surface tension and density of tin, indium, aluminum and gallium. High Temp. 1972, 10, 66–71. Available online: http://www.mathnet.ru/links/aa952e995c272bcdeb3b8cff537ed076/tvt10586.pdf (accessed on 15 April 2022). (In Russian).
- Bykova, N.A.; Shevchenko, V.G. Density and Surface Tension of Copper, Aluminum, Gallium, Indium and Tin. In Physicochemical Research on Liquid Metals and Alloys; Ural Research Center of Academy of Sciences USSR: Sverdlovsk, Russia, 1974; pp. 42–46. (In Russian) [Google Scholar]
- Drotning, W.D. Thermal expansion of molten tin, lead, and aluminum to 1300 K. High Temp. Sci. 1979, 11, 265–276. [Google Scholar]
- Makeev, V.V.; Demina, E.L.; Popel, P.S.; Arkhangelsky, E.L. Research on metals density by the gamma transmission method over a temperature range of 290–2100 K. High Temp. 1989, 27, 701–706. Available online: http://www.mathnet.ru/links/eec257fb71c0d5c9bca9f88ce5d1908d/tvt4037.pdf (accessed on 8 March 2022). (In Russian).
- Smith, P.M.; Elmer, J.W.; Gallegos, G.F. Measurements of the density of liquid aluminum alloys by an X-ray attenuation technique. Scripta Mater. 1999, 40, 937–941. [Google Scholar] [CrossRef]
- Sarou-Kanian, V.; Millot, F.; Rifflet, J.C. Surface tension and density of oxygen-free liquid aluminum at high temperature. Int. J. Thermophys. 2003, 24, 277–286. [Google Scholar] [CrossRef]
- Khairulin, R.A. Density, Thermal Expansion and Phase Transformations of Liquid Metals and Rare-Earth Element-Based Compounds. In Habilitation Thesis (Phys.-Maths.); Kutateladze Institute of Thermophysics SB RAS: Novosibirsk City, Russia, 2003; Available online: https://static.freereferats.ru/_avtoreferats/01002614075.pdf (accessed on 23 February 2022). (In Russian)
- Srirangam, P.; Jeyakumar, M.; Kramer, M.J.; Shankar, S. Partial pair correlation functions and viscosity of liquid Al–Si hypoeutectic alloys via high-energy X-ray diffraction experiments. Philos. Mag. 2011, 91, 3867–3904. [Google Scholar] [CrossRef]
- Schmitz, J.; Hallstedt, B.; Brillo, J.; Egry, I.; Schick, M. Density and thermal expansion of liquid Al-Si alloys. J. Mater. Sci. 2012, 47, 3706–3712. [Google Scholar] [CrossRef]
- Kurochkin, A.R.; Popel’, P.S.; Yagodin, D.A.; Borisenko, D.A.; Okhapkin, A.V. Density of copper-aluminum alloys at temperatures up to 1400 °C determined by the gamma-ray technique. High Temp. 2013, 51, 197–205. [Google Scholar] [CrossRef]
- Leitner, M.; Leitner, T.; Schmon, A.; Aziz, K.; Pottlacher, G. Thermophysical properties of liquid aluminum. Metall. Mater. Trans. A 2017, 48, 3036–3045. [Google Scholar] [CrossRef]
- Wessing, J.J.; Brillo, J. Density, molar volume, and surface tension of liquid Al-Ti. Metall. Mater. Trans. A 2017, 48, 868–882. [Google Scholar] [CrossRef]
- Rusanov, B.A.; Baglasova, E.S.; Popel, P.S.; Sidorov, V.E.; Sabirzyanov, A.A. Gamma-densitometer for studies of high-temperature metal melts. High Temp. 2018, 56, 439–443. [Google Scholar] [CrossRef]
- Gancarz, T.; Jourdan, J.; Gasior, W.; Henein, H. Physicochemical properties of Al, Al-Mg and Al-Mg-Zn alloys. J. Mol. Liq. 2018, 249, 470–476. [Google Scholar] [CrossRef]
- Blairs, S. Review of data for velocity of sound in pure liquid metals and metalloids. Int. Mater. Rev. 2007, 52, 321–344. [Google Scholar] [CrossRef]
- Filippov, S.I.; Kazakov, N.B.; Pronin, L.A. Ultrasound velocity, liquid metals compressibility and association thereof with various physical properties. Izv. Vyssh. Ucheb. Zaved. Chern. Met. 1966, 9, 8–14. Available online: http://www.mathnet.ru/links/792bad5d6dbd07dffc8f570059f6e1fd/tvt9059.pdf (accessed on 11 January 2022). (In Russian).
- Maier, U.; Steeb, S. Sound velocity in molten alloys of the systems Al-Mg, Al-Sn, Mg-Sn, and Fe-C. Phys. Cond. Matter 1973, 17, 1–10. [Google Scholar] [CrossRef]
- Kruglov, L.D. Sound velocity, compressibility and Gruneisen parameter of molten Al, Mg, Zn, Sn, Sb and Cd. Russ. J. Phys. Chem. 1976, 50, 1481. (In Russian) [Google Scholar]
- Stremousov, V.I.; Tekuchev, V.V. Ultrasound velocity in Al-Sn and Al-Zn binary liquid metals. Russ. J. Phys. Chem. 1976, 50, 1418. (In Russian) [Google Scholar]
- Stremousov, V.I.; Tekuchev, V.V. Ultrasound velocity in Al-based binary liquid alloys. Russ. J. Phys. Chem. 1977, 51, 206. (In Russian) [Google Scholar]
- Keita, N.M.; Steinemann, S. Compressibility and structure factors at zero wave vector of liquid aluminium-silicon alloys. J. Phys. C 1978, 11, 4635–4641. [Google Scholar] [CrossRef]
- Tsu, Y.; Suenaga, H.; Takano, K.; Shiraishi, Y. The velocity of ultrasound in molten bismuth, aluminum, silver and copper. T. Jpn. I. Met. 1982, 23, 1–7. [Google Scholar] [CrossRef]
- Glazov, V.M.; Pavlova, L.M.; Kim, S.G. A study on acoustic properties of Al-Sb melts. High Temp. 1985, 23, 564. (In Russian) [Google Scholar]
- Barbier, P.; Gelon, J.L.; Robert, J. Melting curves of Bi, Pb and Al using microdifferential thermal analysis up to 1.4 GPa. High Pressure Res. 1992, 10, 465–468. [Google Scholar] [CrossRef]
- Errandonea, D. The melting curve of ten metals up to 12 GPa and 1600 K. J. Appl. Phys. 2010, 108, 033517. [Google Scholar] [CrossRef]
- Simon, F.; Glatzel, G. Bernerkungen zur schmelzdruckkurve. Z. Anorg. Allg. Chem. 1929, 178, 309–316. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, B.K. Volume dependence of the melting temperature for aluminium. Solid State Commun. 2010, 150, 1367–1369. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Cai, L. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al. J. Chem. Phys. 2015, 143, 114101. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Jiang, S.; Chen, J. Theoretical investigations on melting/crystallization kinetics in overheated/overcooled aluminum at high pressures. J. Appl. Phys. 2019, 126, 125113. [Google Scholar] [CrossRef]
- Pu, C.; Yang, X.; Xiao, D.; Cheng, J. Molecular dynamics simulations of shock melting in single crystal Al and Cu along the principle Hugoniot. Mater. Today Commun. 2021, 26, 101990. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Young, D.A.; Cynn, H.; Söderlind, P.; Landa, A. Zero-Kelvin compression isotherms of the elements 1 ≤ Z ≤ 92 to 100 GPa. J. Phys. Chem. Ref. Data 2016, 45, 043101. [Google Scholar] [CrossRef]
- Wang, K.; Reeber, R.R. The perfect crystal, thermal vacancies and the thermal expansion coefficient of aluminium. Philos. Mag. A 2000, 80, 1629–1643. [Google Scholar] [CrossRef]
- Jacobs, M.H.G.; Schmid-Fetzer, R. Thermodynamic properties and equation of state of fcc aluminum and bcc iron, derived from a lattice vibrational method. Phys. Chem. Miner. 2010, 37, 721–739. [Google Scholar] [CrossRef]
ΔT, K | Solid | Liquid | Refs | |
---|---|---|---|---|
CP (298.15) | CP (Tm) | CP (Tm) | ||
0.1–1700 | 24.339 | 33.867 | 31.756 | [9] (Buyco 1970) |
100–4500 | 24.354 | 33.881 | 31.750 | [10] (Glushko 1981) |
0–933.45 | 24.209 | 32.959 | – | [21] (Ditmars 1985) |
0.1–2800 | 24.225 | 33.107 | 31.757 | [11] (Desai 1987) |
298.15–2791 | 24.296 | 33.994 | 31.748 | [12] (Barin 1995) |
0–3000 | 24.209 | 32.959 | 31.751 | [13] (Chase 1998) |
298.15–1273 | 24.418 | 31.838 | 31.838 | [14] (Mills 2002) |
ΔT, K | Purity, % | Form a | Δρ b, % | Refs |
---|---|---|---|---|
933–1173 | 99.998 | P | – | [55] (Glazov 1958) |
1264–1733 | 99.99 | T, P, E | 0.5 | [56] (Goltsova 1965) |
933–1750 | 99.99 | P, E | ±1 | [57] (Ayushina 1968) |
933–1250 | 99.99 | P, E | 1.5 | [58] (Yatsenko 1972) |
933–1473 | 99.99 | E | ±0.5 | [59] (Bykova 1974) |
933–1340 | 99.999 | P, E | 0.2 | [60] (Drotning 1979) |
933–2070 | 99.999 | T, E | 0.2 | [61] (Makeev 1989) |
973–1173 | 99.99 | P, E | – | [62] (Smith 1999) |
1639–2360 | 99.99 | P, E | 1.5 | [63] (Sarou-Kanian 2003) |
933.6–1200 | – | P, E | – | [64] (Hairulin 2003) |
938–1113 | 99.999 | T, P | [65] (Srirangam 2011) | |
933–1673 | 99.999 | P, E | 1 | [66] (Schmitz 2012) |
933–1643 | 99.999 | P, E | 0.2 | [67] (Kurochkin 2013) |
933–1680 | 99.999 | E | ±3.8 | [68] (Leitner 2017) |
933–1823 | 99.999 | P, E | ±1 | [69] (Wessing 2017) |
933–1270 | – | P, E | 0.2 | [70] (Rusanov 2018) |
1356–1743 | 99.999 | P, E | 1 | [71] (Gancarz 2018) |
Equation | Parameter | Value |
---|---|---|
Thermodynamic functions (1)–(3) | Υ1, J·mol–1·K–1 | 0.4307400 |
Υ2, J·mol–1·K–1 | 11.46590 | |
Υ3, J·mol–1·K–1 | 14.01224 | |
θ1, K | 64.9599 | |
θ2, K | 208.0659 | |
θ3, K | 392.5907 | |
ΔS 0, J·mol–1·K–1 | 0.015206 | |
h, J·mol–1·K–m | 5.346947 × 10–7 | |
m | 3.227389 | |
EoS (8) | n0 | 4.69557 |
Bulk modulus (12) | B0, kbar | 795.69 |
s1 | 0.10356 | |
s2 | 5.3621 | |
ω1, K | 225.08 | |
ω2, K | 3980.5 | |
Thermal expansion (9) | V0, cm3/mol | 9.87109 |
X1 | 2.4646 × 10–5 | |
X2 | 4.5046 × 10–5 | |
X3 | 1.5699 × 10–4 | |
Θ1, K | 191.6603 | |
Θ2, K | 368.4523 | |
Θ3, K | 4244.7220 | |
g, K–k | 2.4407 × 10−8 | |
k | 1.840799 |
Equation | Parameter | Value |
---|---|---|
Thermodynamic functions (4)–(6) | a, J·mol–1·K–1 | 31.75 |
b, J·mol–1·K–1 | 3755.104 | |
ΔS 0, J·mol–1·K–1 | −145.7490 | |
EoS (8) | n0 | 5.22253 |
Bulk modulus (12) | B0, kbar | 538.96 |
s1 | 0.14097 | |
s2 | 2.5298 | |
ω1, K | 676.33 | |
ω2, K | 2668.4 | |
Thermal expansion (10) | V0L, cm3/mol | 10.20834 |
A1, K–1 | −1.0952 × 10–4 | |
A2, K–2 | −1.0672 × 10–10 | |
A3, K–3 | 3.5504 × 10–13 |
V0 *1, cm3/mol | B0 *1, kbar | n0 | EoS *2 | Refs |
---|---|---|---|---|
9.993 | 778.97 | 4.26 | Mur | [27] (Vaidya 1970) |
– | 730 | 4.1 | Mur | [28] (Senoo 1976) |
9.998 | 727 (30) | 4.30 (8) | BM3 | [29] (Syassen 1978) |
– | 717 (36) | 4.79 (37) | BM3 | [30] (Ming 1986) |
9.973 | 743 (11) | 4.47 (6) | Vinet | [32] (Dewaele 2004) |
– | 727 | 4.14 | BM3 | [33] (Greene 1994) |
9.995 | 727 (20) | 4.446 (83) | BM3 | [34] (Nishimura 2005) |
– | 760 (20) | 4.6 (7) | Vinet | [1] (Akahama 2006) |
9.98 | 730 | 4.54 (2) | Vinet | [35] (Dewaele 2018) |
9.871 *3 | 795.69 *3 | 4.696 | Tait | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozyrev, N.V.; Gordeev, V.V. Thermodynamic Properties and Equation of State for Solid and Liquid Aluminum. Metals 2022, 12, 1346. https://doi.org/10.3390/met12081346
Kozyrev NV, Gordeev VV. Thermodynamic Properties and Equation of State for Solid and Liquid Aluminum. Metals. 2022; 12(8):1346. https://doi.org/10.3390/met12081346
Chicago/Turabian StyleKozyrev, Nikolay V., and Vladimir V. Gordeev. 2022. "Thermodynamic Properties and Equation of State for Solid and Liquid Aluminum" Metals 12, no. 8: 1346. https://doi.org/10.3390/met12081346
APA StyleKozyrev, N. V., & Gordeev, V. V. (2022). Thermodynamic Properties and Equation of State for Solid and Liquid Aluminum. Metals, 12(8), 1346. https://doi.org/10.3390/met12081346