Effect of Welding Polarity on Mechanical Properties of Submerged Arc Welded Railway Vehicle Wheels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Welding
2.2. Hardness and Microstructures
2.3. Rolling Contact Friction and Wear Test
3. Results and Discussion
3.1. Hardness and Microstructures
3.2. Rolling Contact Friction and Wear Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayhan, Y. Reduction of wear via hardfacing of chisel ploughshare. Tribol. Int. 2006, 39, 570–574. [Google Scholar] [CrossRef]
- Selvi, S.; Sankaran, S.; Srivatsavan, P.R. Comparative study of hardfacing of valve seat ring using MMAW process. J. Mater. Processing Technol. 2008, 207, 356–362. [Google Scholar] [CrossRef]
- Eremin, E.N.; Losev, A.S. Wear resistance increase of pipeline valves by overlaying welding flux-cored wire. Procedia Eng. 2015, 113, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, J.E.; Vijande, R.; Tucho, R.; Rodriguez, J.; Martin, A. Materials selection to excavator teeth in mining industry. Wear 2001, 250, 11–18. [Google Scholar] [CrossRef]
- Singla, S.; Kang, A.S.; Grewal, J.S.; Cheema, G.S. Wear behavior of weld overlay on excavator bucket teeth. Procedia Mater. Sci. 2014, 5, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Gorunov, A.I. Complex refurbishment of titanium turbine blades by applying heat-resistant coatings by direct metal deposition. Eng. Fail. Anal. 2018, 86, 115–130. [Google Scholar] [CrossRef]
- Pauzi, A.A.; Ghazali, M.J.; Zamri, W.F.H.W.; Rajabi, A. Wear characteristics of superalloy and hardface coatings in gas turbine applications—A Review. Metals 2020, 10, 1171. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Z.X.; Hu, W.Q.; Bao, Y.F.; Jiang, Y.F. A new type of submerged-arc flux-cored wire used for hardfacing continuous casting rolls. J. Iron Steel Res. Int. 2011, 18, 74–79. [Google Scholar] [CrossRef]
- Srikarun, B.; Oo, H.Z.; Prapa, M. Influence of different welding processes on microstructure, hardness, and wear behavior of martensitic hardfaced cladding. J. Mater. Eng. Perform. 2021, 30, 8984–8995. [Google Scholar] [CrossRef]
- Malinov, V.L.; Malonov, L.S.; Golyakevich, A.A.; Orlov, L.N. Improving the endurance of crane wheels using new flux-cored wire Veltek-N285C. J. Weld. Int. 2016, 30, 880–883. [Google Scholar] [CrossRef]
- Anan’ev, S.P.; Korotkov, V.A.; Goloviznin, B.L.; Kozlov, V.V. Improving the technology for hardfacing crane wheels. J. Weld. Int. 2007, 21, 534–537. [Google Scholar] [CrossRef]
- Gajvoronsky, A.A.; Poznyakov, V.D.; Sarzhevsky, V.A.; Vasiliev, V.G.; Orlovsky, V.Y. Influence of thermo-deformational cycle of hardfacing on the structure and properties of railway wheels at their reconditioning. Paton Weld. J. 2010, 5, 15–18. [Google Scholar]
- Markisha, L.I.; Poznyakov, V.D.; Gajvoronsky, A.A.; Berdinkova, E.N.; Alekseenko, T.A. Structure and properties of railway wheel surface after restoration surfacing and service loading. Paton Weld. J. 2015, 5–6, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Karnati, S.; Zhang, X.; Burns, E.; Liou, F. Fabrication of AlCoCrFeNi high entropy alloy coating on an AISI 304 substrate via a CoFe2Ni intermediate layer. Entropy 2019, 21, 2. [Google Scholar] [CrossRef] [Green Version]
- Ni, C.; Shi, Y.; Liu, J.; Huang, G. Characterization of Al0.5FeCu0.7NiCoCr high entropy alloy coating on aluminum alloy by laser cladding. Opt. Laser Technol. 2018, 105, 257–263. [Google Scholar] [CrossRef]
- Qiu, X.W. Corrosion behavior of Al2CrFeCo CuNiTi high-entropy alloy coating in alkaline solution and salt solution. Results Phys. 2019, 12, 1737–1741. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Li, J.; Juan, Y.F.; Lu, Z.J.; Jia, W.L. Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding. J. Alloys Compd. 2019, 775, 1–14. [Google Scholar] [CrossRef]
- Qiu, X.W. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. J. Alloys Compd. 2018, 735, 359–364. [Google Scholar] [CrossRef]
- Cai, Z.; Cui, X.; Liu, Z.; Li, Y.; Dong, M.; Jin, G. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing. Opt. Laser Technol. 2018, 99, 276–281. [Google Scholar] [CrossRef]
- Juan, Y.F.; Li, J.; Jiang, Y.Q.; Jia, W.L.; Lu, Z.J. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings. Appl. Surf. Sci. 2019, 465, 700–714. [Google Scholar] [CrossRef]
- Mendez, P.F.; Barnes, N.; Bell, K.; Borlea, S.D.; Gajapathi, S.S.; Guest, S.D.; Izadi, H.A.; Gol, K.; Wood, G. Welding processes for wear resistant overlays. J. Manuf. Process 2014, 16, 4–25. [Google Scholar] [CrossRef]
- Zahiri, R.; Sundaramoorthy, R.; Lysz, P.; Subramanian, C. Hardfacing using ferro-alloy powder mixtures by submerged arc welding. Surf. Coat. Technol. 2014, 260, 220–229. [Google Scholar] [CrossRef]
- Öteyaka, M.Ö.; Arslan, A.E. Wear and corrosion characterisation of AISI 1030, AISI 1040 and AISI 1050 steel coated with Shielded Metal Arc Welding (SMAW) and Plasma Transfer Arc (PTA) methods. Sådhanå 2021, 46, 134. [Google Scholar] [CrossRef]
- Günther, K.; Bergmann, J.P.; Suchodoll, D. Hot wire-assisted gas metal arc welding of hypereutectic FeCrC hardfacing alloys: Microstructure and wear properties. Surf. Coat. Technol. 2018, 334, 420–428. [Google Scholar] [CrossRef]
- Gianni, A.; Ghidini, A.; Karlsson, T.; Ekberg, A. Bainitic steel grade for solid wheels: Metallurgical, mechanical, and in-service testing. Proc. IMechE Part F J. Rail Rapid Transit 2009, 223, 163–171. [Google Scholar] [CrossRef]
- Goo, B.C.; Lee, Y.J. Railway vehicle wheel restoration by submerged arc welding and its characterization. Science 2020, 2, 33. [Google Scholar] [CrossRef]
- Aloraier, A.; Albannai, A.; Alaskari, A.; Alawadhi, M. TBW technique by varying weld polarities in SMAW as an alternative to PWHT. Int. J. Press. Vessel. Pip. 2021, 194, 104505. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, Y.; Gu, Y.; Xie, J.; Li, C. Effects of electrode polarity on the droplet transfer mode in self-shielded flux-cored arc welding. J. Manuf. Processes 2020, 58, 478–488. [Google Scholar] [CrossRef]
- Zhao, Y.; Chung, H. Numerical simulation of droplet transfer behavior in variable polarity gas metal arc welding. Int. J. Heat Mass Transf. 2017, 111, 1129–1141. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity, 3rd ed.; McGraw Hill: New York, NY, USA, 1970; pp. 403–420. [Google Scholar]
- Aloraier, A.; Al-Fadhalah, K.; Paradowska, A.M.; Alfaraj, E. Effect of welding polarity on bead geometry, microstructure, microhardness, and residual stresses of 1020 steel. J. Eng. Res. 2014, 2, 137–160. [Google Scholar] [CrossRef]
- Faccoli, M.; Ghidini, A.; Mazzù, A. Changes in the Microstructure and Mechanical Properties of Railway Wheel Steels as a Result of the Thermal Load Caused by Shoe Braking. Metall. Mater. Trans. A 2019, 50, 1701–1714. [Google Scholar] [CrossRef]
- Jorge, J.C.F.; de Souza, L.F.G.; Mende, M.C.; Bott, I.S.; Araújo, L.S.; dos Santos, V.R.; Rebello, J.M.A.; Evans, G.M. Microstructure characterization and its relationship with impact toughness of C–Mn and high strength low alloy steel weld metals—A review. J. Mater. Res. Technol. 2021, 10, 471–501. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, J.F.; Wang, W.J.; Jin, X.S.; Zhu, M.H. Slippage effect on rolling contact wear and damage behavior of pearlitic steels. Wear 2016, 362–363, 78–86. [Google Scholar] [CrossRef]
Material | C | Si | Mn | Ni | Cr | Al | Ti | V | Fe |
---|---|---|---|---|---|---|---|---|---|
Wheel | 0.66 | 0.25 | 0.72 | 0.02 | 0.08 | 0.006 | 0.012 | 0.001 | Bal. |
Welding wire | 0.16–0.20 | 1.37–1.76 | 2.0–2.35 | 0.41–0.62 | 0.82–1.23 | 0.03–0.04 | 0.04–0.06 | 0.04–0.06 | Bal. |
Rail | 0.63–0.75 | 0.15–0.30 | 0.70–1.10 | - | - | - | - | - | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goo, B.-C.; Seo, J.-W.; Lee, Y.-J. Effect of Welding Polarity on Mechanical Properties of Submerged Arc Welded Railway Vehicle Wheels. Metals 2022, 12, 1381. https://doi.org/10.3390/met12081381
Goo B-C, Seo J-W, Lee Y-J. Effect of Welding Polarity on Mechanical Properties of Submerged Arc Welded Railway Vehicle Wheels. Metals. 2022; 12(8):1381. https://doi.org/10.3390/met12081381
Chicago/Turabian StyleGoo, Byeong-Choon, Jung-Won Seo, and Young-Jin Lee. 2022. "Effect of Welding Polarity on Mechanical Properties of Submerged Arc Welded Railway Vehicle Wheels" Metals 12, no. 8: 1381. https://doi.org/10.3390/met12081381
APA StyleGoo, B. -C., Seo, J. -W., & Lee, Y. -J. (2022). Effect of Welding Polarity on Mechanical Properties of Submerged Arc Welded Railway Vehicle Wheels. Metals, 12(8), 1381. https://doi.org/10.3390/met12081381