Elastocaloric Effect in Aged Single Crystals of Ni54Fe19Ga27 Ferromagnetic Shape Memory Alloy
Abstract
:1. Introduction
2. Materials and Methods
- −
- aged at 773 K for 1 h followed by slow air cooling in order to keep the austenite L21-structure (after aging at 773 K);
- −
- aged at 1373 K for 0.5 h followed by quenching in water.
3. Results
4. Discussion
5. Conclusions
- It has been shown that aging at 773 K for 1 h and aging at 1373 K for 0.5 h leads to the precipitation of semi-coherent γ’-phase particles up to 500 nm in size and incoherent γ’-phases particles from 5 to 35 microns in size, respectively. Precipitation of γ’-phases particles, which do not undergo transformations, results in a decrease in the transformation entropy changes ΔSA–M (ΔSM–A) for both forward and reverse L21(B2)-10M/14M-L10 martensitic transformations as compared with as-grown single crystals. Moreover, the specific heat capacity Cp also decreases by 54 J/(kgK) in the crystals aged at 773 K and by 70 J/(kgK) in the crystals aged at 1373 K as compared with the as-grown crystals;
- The [001]-oriented Ni54Fe19Ga27 single crystals aged at 773 K for 1 h exhibit the widest temperature range of the superelastic behavior and associated elastocaloric effect ΔTSE = 270 K with the maximum adiabatic cooling ΔTad up to 11.1 (±0.5) K. The crystals with incoherent γ′-phase particles (aging at 1373 K, 0.5 h) show the operating temperature range of ΔTSE = 255 K with slightly smaller adiabatic cooling ΔTad below 9.7 (±0.5) K. In contrast, the temperature range of the elastocaloric effect ΔTSE = 195–200 K with the maximum adiabatic cooling ΔTad up to 10.9 (±0.8) K is smaller in the as-grown crystals than in the aged ones;
- The aged [001]-oriented Ni54Fe19Ga27 single crystals demonstrate high cyclic stability: the adiabatic cooling ΔTad and loading/unloading curves do not depend on the number of operating cycles from 3 to 150 regardless of the particle size;
- Wide stress hysteresis and low values of specific heat capacity Cp lead to the decrease in the coefficient of performance (COP = 10.6–7.7) in the aged crystals as compared with the as-grown crystals (COP is up to 21.7). Despite this feature, the wide operating temperature range of the EC effect and excellent reversibility of the EC performance make aged [001]-orientated Ni54Fe19Ga27 single crystals a promising elastocaloric material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, S.; Geng, Y.; Wang, Y.; Ling, J.; Hwang, Y.; Radermacher, R.; Takeuchi, I.; Cui, J. A review of elastocaloric cooling: Materials, cycles and system integrations. Int. J. Refrig. 2016, 64, 1–19. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C.R. A review and analysis of the elastocaloric effect for solid state refrigeration devices: Challenges and opportunities. MRS Energy Sustain. Rev. J. 2015, 2, E16. [Google Scholar] [CrossRef]
- Cong, D.; Xiong, W.; Planes, A.; Ren, Y.; Manosa, L.; Cao, P.; Nie, Z.; Sun, X.; Yang, Z.; Hong, X.; et al. Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. Phys. Rev. Lett. 2019, 122, 255703. [Google Scholar] [CrossRef]
- Masdeu, F.; Pons, J.; Torrens-Serra, J.; Chumlyakov, Y.; Cesari, E. Superelastic behavior and elastocaloric effect in Ni51.5Fe21.5Ga27.0 ferromagnetic shape memory single crystal under compression. Mater. Sci. Eng. A 2022, 833, 142362. [Google Scholar] [CrossRef]
- Xiao, F.; Jin, M.; Liu, J.; Jin, X. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals. Acta Mater. 2015, 96, 292–300. [Google Scholar] [CrossRef]
- Wu, Y.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017, 135, 158–176. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Liu, J. Giant and reversible roomtemperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy. Sci. Rep. 2016, 6, 25500. [Google Scholar] [CrossRef]
- Santamarta, R.; Font, J.; Muntasell, J.; Masdeu, F.; Pons, J.; Cesari, E.; Dutkiewicz, J. Effect of ageing on the martensitic transformation of Ni–Fe–Ga alloys. Scr. Mater. 2006, 54, 1105–1109. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Panchenko, E.Y.; Kirillov, V.A.; Timofeeva, E.E.; Kretinina, I.V.; Danil’son, Y.N.; Karaman, I.; Maier, H.; Cesari, E. Thermoelastic martensitic transformations in single crystals with disperse particles. Russ. Phys. J. 2012, 54, 937–950. [Google Scholar] [CrossRef]
- Vetoshkina, N.; Panchenko, E.; Timofeeva, E.; Chumlyakov, Y.; Surikov, N.; Osipovich, K.; Maier, H. Effect of ageing on the cyclic stability of superelasticity in [001]-oriented Ni49Fe18Ga27Co6 single crystals in compression. Mater. Today Proc. 2017, 4, 4797–4801. [Google Scholar] [CrossRef]
- Dadda, J.; Maier, H.J.; Karaman, I.; Chumlyakov, Y.I. Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater. 2009, 57, 6123–6134. [Google Scholar] [CrossRef]
- Eftifeeva, A.; Panchenko, E.; Chumlyakov, Y.; Yanushonite, E.; Gerstein, G.; Maier, H.J. Compressive response of high-strength [001]-oriented single crystals of a Co35Ni35Al30 shape memory alloy. J. Alloys Compd. 2019, 787, 963–971. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Panchenko, E.Y.; Timofeeva, E.E.; Kretinina, I.V.; Kuts, O.A. Physics of thermoelastic martensitic transformation in high-strength single crystals. Mater. Sci. Found. 2015, 81–82, 107–174. [Google Scholar] [CrossRef]
- Zhao, D.; Xiao, F.; Nie, Z.; Cong, D.; Sun, W.; Liu, J. Burst-like superelasticity and elastocaloric effect in [011] oriented Ni50Fe19Ga27Co4 single crystals. Scr. Mater. 2018, 149, 6–10. [Google Scholar] [CrossRef]
- Timofeeva, E.E.; Panchenko, E.Y.; Vetoshkina, N.G.; Chumlyakov, Y.I.; Tagiltsev, A.I.; Eftifeeva, A.S.; Maier, H. The mechanism of orientation dependence of cyclic stability of superelasticity in NiFeGaCo single crystals under compression. Russ. Phys. J. 2016, 59, 1251–1260. [Google Scholar] [CrossRef]
- Larchenkova, N.G.; Panchenko, E.Y.; Timofeeva, E.E.; Tagiltsev, A.I.; Chumlyakov, Y.I. Cyclic stability of superelasticity in [001]-oriented stress-free and stress-assisted aged Ni49Fe18Ga27Co6 single crystals. AIP Conf. Proc. 2018, 2051, 020166. [Google Scholar] [CrossRef]
- Eftifeeva, A.; Panchenko, E.; Yanushonite, E.; Kurlevskaya, I.; Timofeeva, E.; Tokhmetova, A.; Surikov, N.; Tagiltsev, A.; Chumlyakov, Y. Superelasticity and elastocaloric cooling capacity in stress-induced martensite aged [001]A-oriented Ni54Fe19Ga27 single crystals. Mater. Sci. Eng. A, 2022; in press. [Google Scholar]
- Hohne, G.W.H.; Hemminger, W.; Flammersheim, H.-J. Differential Scanning Calorimetry: An Introduction for Practitioners; Springer: New York, NY, USA, 1996; p. 217. [Google Scholar]
- Bolgar, M.K.; Daroczi, L.; Toth, L.Z.; Timofeeva, E.E.; Panchenko, E.Y.; Chumlyakov, Y.I.; Beke, D.L. Effect of g precipitates on thermal and acoustic noises emitted during austenite/martensite transformation in NiFeGaCo single crystals. J. Alloys Compd. 2017, 705, 840–848. [Google Scholar] [CrossRef]
- Oikawa, K.; Ota, T.; Ohmori, T.; Tanaka, Y.; Morito, H.; Fujita, A.; Kainuma, R.; Fukamichi, K.; Ishida, K. Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga-Fe shape memory alloys. Appl. Phys. Lett. 2002, 81, 5201–5203. [Google Scholar] [CrossRef]
- Imano, Y.; Omori, T.; Oikawa, K.; Sutou, Y.; Kainuma, R.; Ishida, K. Martensitic and magnetic transformations of Ni-Ga-Fe-Co ferromagnetic shape memory alloys. Mater. Sci. Eng. A 2006, 438–440, 970–973. [Google Scholar] [CrossRef]
- Picornell, C.; Pons, J.; Cesari, E.; Dutkiewicz, J. Thermal characteristics of Ni–Fe–Ga–Mn and Ni-Fe-Ga-Co ferromagnetic shape memory alloys. Intermetallics 2008, 16, 751–757. [Google Scholar] [CrossRef]
- Sutou, Y.; Kamiya, N.; Omori, T.; Kainuma, R.; Ishida, K.; Oikawa, K. Stress-strain characteristics in Ni-Ga-Fe ferromagnetic shape memory alloys. Appl. Phys. Lett. 2004, 84, 1275–1277. [Google Scholar] [CrossRef]
- Hamilton, R.F.; Sehitoglu, H.; Efstathiou, C.; Maier, H.J. Inter-martensitic transitions in Ni-Fe-Ga single crystals. Acta Mater. 2007, 55, 4867–4876. [Google Scholar] [CrossRef]
- Panchenko, E.; Chumlyakov, Y.; Maier, H.J.; Timofeeva, E.; Karaman, I. Tension/compression asymmetry of functional properties in [001]-oriented ferromagnetic NiFeGaCo single crystals. Intermetallics 2010, 18, 2458–2463. [Google Scholar] [CrossRef]
- Bruno, N.M.; Karaman, I.; Chumlyakov, Y.I. Orientation dependence of the elastocaloric effect in Ni54Fe19Ga27 ferromagnetic shape memory alloy. Phys. Status Solidi B 2018, 255, 1700437. [Google Scholar] [CrossRef]
- Mañosa, L.; Planes, A. Materials with giant mechanocaloric effects: Cooling by strength. Adv. Mater. 2017, 29, 1603607. [Google Scholar] [CrossRef]
- Beke, D.L.; Daróczi, L.; Elrasasi, T.Y. Determination of elastic and dissipative energy contributions to martensitic phase transformation in shape memory alloys. In Shape Memory Alloys—Processing, Characterization and Applications; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Chumlyakov, Y.I.; Kireeva, I.V.; Pobedennaya, P.; Krooβ, P.; Niendorf, T. Rubber-like behaviour and superelasticity of [001]-oriented FeNiCoAlNb single crystals containing γ- and β-phase particles. J. Alloys Compd. 2021, 856, 158158. [Google Scholar] [CrossRef]
- Li, P.; Karaca, H.E.; Chumlyakov, Y.I. Orientation dependent compression behavior of Co35Ni35Al30 single crystals. J. Alloys Compd. 2017, 718, 326–334. [Google Scholar] [CrossRef]
- Gall, K.; Maier, H.J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002, 50, 4643–4657. [Google Scholar] [CrossRef]
- Tusek, J.; Engelbrecht, K.; Manosa, L.; Vives, E.; Pruds, N. Understanding the thermodynamic properties of the elastocaloric effect through experimentation and modeling. Shap. Mem. Superelasticity 2016, 2, 317–329. [Google Scholar] [CrossRef]
- Yang, Z.; Cong, D.Y.; Sun, X.M.; Nie, Z.N.; Wang, Y.D. Enhanced cyclability of elastocaloric effect in born-microalloyed Ni-Mn-In magnetic shape memory alloys. Acta Mater. 2017, 127, 33–42. [Google Scholar] [CrossRef]
- Guo, J.; Wei, Z.; Shen, Y.; Zhang, Y.; Li, J.; Hou, X.; Liu, J. Low-temperature superelasticity and elastocaloric effect in textured Ni-Mn-Ga-Cu shape memory alloys. Scr. Mater. 2020, 185, 56–60. [Google Scholar] [CrossRef]
Heat Treatment | Ms, (±2) K | Mf, (±2) K | As, (±2) K | Af, (±2) K | Cp, J/(kgK) | ΔSA–M, J/(kgK) | ΔSM–A, J/(kgK) | ΔTadt(A–M), K | ΔTadt(M–A), K |
---|---|---|---|---|---|---|---|---|---|
As-grown [17] | 276 | 265 | 280 | 289 | 488 | −17.6 | 16.5 | 10.2 | 9.6 |
Aged at 773 K | 259 | 245 | 257 | 270 | 434 | −15.9 | 14.2 | 9.7 | 8.7 |
Aged at 1373 K | 281 | 261 | 274 | 295 | 418 | −14.0 | 10.1 | 9.6 | 7.0 |
Heat Treatment | αMs, MP/K | Cp, J/(kgK) | |εrev|max, % | ΔSA–M, J/(kgK) | ΔTadt(A–M), K | ΔTadexp(max), K |
---|---|---|---|---|---|---|
Aged at 773 K | 2.7 | 434 | 5.4 | −17.2 | 10.5 | 11.1 (±0.5) |
Aged at 1373 K | 2.5 | 418 | 4.7 | −13.9 | 9.6 | 9.7 (±0.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panchenko, E.Y.; Yanushonite, E.I.; Eftifeeva, A.S.; Tokhmetova, A.B.; Kurlevskaya, I.D.; Tagiltsev, A.I.; Surikov, N.S.; Timofeeva, E.E.; Chumlyakov, Y.I. Elastocaloric Effect in Aged Single Crystals of Ni54Fe19Ga27 Ferromagnetic Shape Memory Alloy. Metals 2022, 12, 1398. https://doi.org/10.3390/met12081398
Panchenko EY, Yanushonite EI, Eftifeeva AS, Tokhmetova AB, Kurlevskaya ID, Tagiltsev AI, Surikov NS, Timofeeva EE, Chumlyakov YI. Elastocaloric Effect in Aged Single Crystals of Ni54Fe19Ga27 Ferromagnetic Shape Memory Alloy. Metals. 2022; 12(8):1398. https://doi.org/10.3390/met12081398
Chicago/Turabian StylePanchenko, Elena Y., Eleonora I. Yanushonite, Anna S. Eftifeeva, Aida B. Tokhmetova, Irina D. Kurlevskaya, Anton I. Tagiltsev, Nikita S. Surikov, Ekaterina E. Timofeeva, and Yuri I. Chumlyakov. 2022. "Elastocaloric Effect in Aged Single Crystals of Ni54Fe19Ga27 Ferromagnetic Shape Memory Alloy" Metals 12, no. 8: 1398. https://doi.org/10.3390/met12081398
APA StylePanchenko, E. Y., Yanushonite, E. I., Eftifeeva, A. S., Tokhmetova, A. B., Kurlevskaya, I. D., Tagiltsev, A. I., Surikov, N. S., Timofeeva, E. E., & Chumlyakov, Y. I. (2022). Elastocaloric Effect in Aged Single Crystals of Ni54Fe19Ga27 Ferromagnetic Shape Memory Alloy. Metals, 12(8), 1398. https://doi.org/10.3390/met12081398