Ball Burnishing of Friction Stir Welded Aluminum Alloy 2024-T3: Experimental and Numerical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimentation
2.2. 3D Finite Element Simulation
- Attempts are made to maintain the integrity of the model by considering the same hardening model used in FSW simulation;
- Combined isotropic and kinematic hardening has been reported in BB simulation [21]. However, due to the unavailability of Chaboche kinematic hardening for the FSW zone of aluminum alloy 2024-T3, isotropic hardening was a suitable candidate for a hardening model.
3. Results and Discussion
3.1. Surface Texture
3.2. Hardness Distribution
3.3. Tensile Mechanical Properties
3.3.1. Tensile Test for Aluminum Alloy and Weld Specimens
3.3.2. Tensile Test for FSW Samples under BB Process
3.4. Residual Stress Evolution in an Integrated Numerical Model (in As-Welded and FSW + BB Specimens)
3.4.1. Residual Stresses Evolution in FSW
3.4.2. Residual Stress Evolution in BB of FSW Specimens
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Mishra, R.S.; Baumann, J.A. Residual Stresses in Friction Stir Welding, 1st ed.; Butterworth-Heinemann: Waltham, MA, USA, 2013. [Google Scholar] [CrossRef]
- Lohwasser, D.; Chen, Z. (Eds.) Friction Stir Welding: From Basics to Applications, 1st ed.; Elsevier: North Andover, MA, USA, 2009. [Google Scholar] [CrossRef]
- Moreira, P.M.; De Figureueiredo, M.A.; De Castro, P.M. Fatigue behavior of FSW and MIG weldments for two aluminum alloys. Theor. Appl. Fract. Mech. 2007, 48, 169–177. [Google Scholar] [CrossRef]
- Jenarthanan, M.P.; Varma, C.V.; Manohar, V.K. Impact of friction stir welding (FSW) process parameters on tensile strength during dissimilar welds of AA2014 and AA6061. Mater. Today Proc. 2018, 5, 14384–14391. [Google Scholar] [CrossRef]
- Hassan, A.M. The effects of ball-and roller-burnishing on the surface roughness and hardness of some non-ferrous metals. J. Mater. Process. Technol. 1997, 72, 385–391. [Google Scholar] [CrossRef]
- El-Axir, M.H. An investigation into roller burnishing. Int. J. Mach. Tools Manuf. 2000, 40, 1603–1617. [Google Scholar] [CrossRef]
- Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O. On the influence of mechanical surface treatments—Deep rolling and laser shock peening—On the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures. Mater. Sci. Eng. A. 2003, 355, 216–230. [Google Scholar] [CrossRef]
- García-Granada, A.A.; Gomez-Gras, G.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Reyes, G. Ball-burnishing effect on deep residual stress on AISI 1038 and AA2017-T4. Mater. Manuf. Process. 2017, 32, 1279–1289. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Landon, Y.; Dessein, G.; Lluma-Fuentes, J.; Wagner, V. Comprehensive analysis of surface integrity modification of ball-end milled Ti-6Al-4V surfaces through vibration-assisted ball burnishing. J. Mater. Process. Technol. 2019, 267, 230–240. [Google Scholar] [CrossRef]
- Prevéy, P.S.; Shepard, M.J.; Smith, P.R. The effect of Low Plasticity Burnishing (LPB) on the HCF performance and FOD resistance of Ti-6AI-4V. In Proceedings of the 6th National Turbine Engine High Cycle Fatigue (HCF) Conference, Jacksonville, FL, USA, 5–8 March 2001; Available online: https://apps.dtic.mil/sti/pdfs/ADA447005.pdf (accessed on 20 July 2015).
- Prevéy, P.; Mahoney, M.W. Improved fatigue performance of friction stir welds with low plasticity burnishing: Residual stress design and fatigue performance assessment. In Proceedings of the THERMEC’2003 International Conference on Processing & Manufacturing of Advanced Materials, Madrid, Spain, 7–11 July 2003; Volume 426, pp. 2933–2940. Available online: https://www.lambdatechs.com/wp-content/uploads/239.pdf (accessed on 20 July 2015).
- Başak, H.; Özkan, S.; Taşkesen, A. Application of burnishing process on friction stir welding and investigation of the effect of burnishing process on the surface roughness. Exp. Tech. 2011, 35, 8–16. [Google Scholar] [CrossRef]
- Huang, Y.X.; Wan, L.; Lv, S.X.; Zhang, Z.; Liu, H.J. New technique of in situ rolling friction stir welding. Sci. Technol. Weld. Join. 2012, 17, 636–642. [Google Scholar] [CrossRef]
- Rodríguez, A.; Calleja, A.; López de Lacalle, L.N.; Pereira, O.; González, H.; Urbikain, G.; Laye, J. Burnishing of FSW aluminum Al-Cu-Li components. Metals 2019, 9, 260. [Google Scholar] [CrossRef]
- Amini, C.; Hasanifard, S.; Zehsaz, M.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A. Friction stir welding of AA2024-T3: Development of numerical simulation considering thermal history and heat generation. Int. J. Adv. Manuf. Technol. 2021, 117, 2481–2500. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Gomez-Gras, G.; Lluma-Fuentes, J. Ultrasonic Vibration-Assisted Ball Burnishing Tool. Referencia de patente P201730385, 21 March 2017. [Google Scholar]
- Sayahi, M.; Sghaier, S.; Belhadjsalah, H. Finite element analysis of ball burnishing process: Comparisons between numerical results and experiments. Int. J. Adv. Manuf. Technol. 2013, 67, 1665–1673. [Google Scholar] [CrossRef]
- Korzynski, M. A model of smoothing slide ball-burnishing and an analysis of the parameter interaction. J. Mater. Process. Technol. 2009, 209, 625–633. [Google Scholar] [CrossRef]
- Bouzid Saï, W.; Saï, K. Finite element modeling of burnishing of AISI 1042 steel. Int. J. Adv. Manuf. Technol. 2005, 25, 460–465. [Google Scholar] [CrossRef]
- Skalski, K.; Morawski, A.; Przybylski, W. Analysis of contact elastic-plastic strains during the process of burnishing. Int. J. Mech. Sci. 1995, 37, 461–472. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, Z.; Wang, B.; Jiang, J. Residual stress regenerated on low plasticity burnished Inconel 718 surface after initial turning process. J. Manuf. Sci. Eng. 2019, 141, 121004. [Google Scholar] [CrossRef]
- Amini, C.; Jerez-Mesa, R.; Travieso-Rodriguez Llumà, J.; Estevez-Urra, A. Finite element analysis of ball burnishing on ball-end milled surfaces considering their original topology and residual stress. Metals 2020, 10, 638. [Google Scholar] [CrossRef]
- Bhushan, R.K.; Sharma, D. Investigation of mechanical properties and surface roughness of friction stir welded AA6061-T651. Int. J. Mech. Mater. Eng. 2020, 15, 7. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Y.; Cao, J.; Shen, J.; dos Santos, J.F. Recent progress on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci. 2021, 115, 100706. [Google Scholar] [CrossRef]
- Zhu, R.; Gong, W.B.; Cui, H. Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints. Int. J. Adv. Manuf. Technol. 2020, 108, 331–343. [Google Scholar] [CrossRef]
- Xie, Y.; Meng, X.; Huang, Y. Entire-process simulation of friction stir welding—Part 1: Experiments and simulation. Welding J. 2022, 101, 5. [Google Scholar] [CrossRef]
- Gachi, S.; Aissani, M.; Baudin, T.; Helbert, A.; Brisset, F.; Gautrot, S.; Mathon, M.H.; Bradai, D.; Boubenider, F. The microstructure, texture and mechanical properties of friction stir welded aluminum alloy. Russ. J. Non-Ferrous Met. 2020, 61, 523–533. [Google Scholar] [CrossRef]
- Nouri, A.; Kazemi Nasrabadi, M. Ductile Failure Prediction of Friction Stir Welded AA7075-T6 Aluminum Alloy Weakened by a V-notch. J. Stress. Anal. 2019, 4, 113–124. [Google Scholar] [CrossRef]
- Bachmann, M.; Carstensen, J.; Bergmann, L.; dos Santos, J.F.; Wu, C.S.; Rethmeier, M. Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds. Int. J. Adv. Manuf. Technol. 2017, 91, 1443–1452. [Google Scholar] [CrossRef]
- Zhu, X.K.; Chao, Y.J. Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. J. Mater. Process. Technol. 2004, 146, 263–272. [Google Scholar] [CrossRef]
- Riahi, M.; Nazari, H. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int. J. Adv. Manuf. Technol. 2011, 55, 143–152. [Google Scholar] [CrossRef]
- ANSYS, Inc. ANSYS Mechanical APDL Theory Reference; Release 17.0 (Version 17); ANSYS Inc.: Canonsburg, PA, USA, 2016. [Google Scholar]
- He, J.; Ling, Z.; Li, H. Effect of tool rotational speed on residual stress, microstructure, and tensile properties of friction stir welded 6061-T6 aluminum alloy thick plate. Int. J. Adv. Manuf. Technol. 2016, 84, 1953–1961. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
Weight% | 0.13 | 0.5 | 4.8 | 0.72 | 1.41 | 0.1 | 0.07 | 0.15 | Balanced |
Test | FSW Parameters | BB Parameters | ||
---|---|---|---|---|
No. | Rotational Speed (rpm) | Welding Speed (mm/min) | Lateral Feed for Burnishing (mm) | Burnishing Force (N) |
1 | 550 | 20 | ||
2 | 550 | 40 | ||
3 | 825 | 30 | 0.3 | 170 |
4 | 1100 | 20 | ||
5 | 1100 | 40 |
Item | Young’s Modulus (GPa) | Tangential Modulus (GPa) | Yield Stress (MPa) | UTS (MPa) | Failure Strain (%) |
---|---|---|---|---|---|
Mean | 71.8 | 0.006 | 344 | 464.5 | 11.1 |
STD. | 1.97 | 0.0023 | 3.8 | 8.8 | 1.2 |
Parent Material | Test | FSW | FSW + BB | |||
---|---|---|---|---|---|---|
E (MPa) | ET (MPa) | E (MPa) | ET (MPa) | E (MPa) | ET (MPa) | |
1 | 67.5 | 0.133 | 66 | 0.016 | ||
71.8 | 0.0006 | 2 | 69.5 | 0.022 | 70 | 0.017 |
3 | 73.9 | 0.013 | 76 | 0.037 | ||
4 | 71.5 | 0.02 | 73 | 0.02 | ||
5 | 70.1 | 0.007 | 68 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amini, C.; Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Mousavi, H.; Lluma-Fuentes, J.; Zandi, M.D.; Hassanifard, S. Ball Burnishing of Friction Stir Welded Aluminum Alloy 2024-T3: Experimental and Numerical Studies. Metals 2022, 12, 1422. https://doi.org/10.3390/met12091422
Amini C, Jerez-Mesa R, Travieso-Rodriguez JA, Mousavi H, Lluma-Fuentes J, Zandi MD, Hassanifard S. Ball Burnishing of Friction Stir Welded Aluminum Alloy 2024-T3: Experimental and Numerical Studies. Metals. 2022; 12(9):1422. https://doi.org/10.3390/met12091422
Chicago/Turabian StyleAmini, Cyrus, Ramón Jerez-Mesa, Jose Antonio Travieso-Rodriguez, Hojjat Mousavi, Jordi Lluma-Fuentes, Mohammad Damous Zandi, and Soran Hassanifard. 2022. "Ball Burnishing of Friction Stir Welded Aluminum Alloy 2024-T3: Experimental and Numerical Studies" Metals 12, no. 9: 1422. https://doi.org/10.3390/met12091422
APA StyleAmini, C., Jerez-Mesa, R., Travieso-Rodriguez, J. A., Mousavi, H., Lluma-Fuentes, J., Zandi, M. D., & Hassanifard, S. (2022). Ball Burnishing of Friction Stir Welded Aluminum Alloy 2024-T3: Experimental and Numerical Studies. Metals, 12(9), 1422. https://doi.org/10.3390/met12091422