Liquid Copper and Iron Production from Chalcopyrite, in the Absence of Oxygen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Experiments at the 300 mA Scale
2.1.1. Chalcopyrite Concentrate: Characterization
2.1.2. Sulfidation
2.1.3. Oxide Phase Removal
2.1.4. Electrolyte Synthesis: Chalcopyrite
2.1.5. Electrolyte Synthesis: Cu2S Enrichment
2.1.6. Electrolytic Reduction on Graphite Cathode at the 300 mA Scale
2.1.7. Post-Experiment Observation
2.1.8. Thermal-Only Trials in the Thermal Imaging Furnace
2.1.9. Electrolytic Reduction and Thermal Trials on Copper and Cast Iron Cathodes at the 300 mA Scale
2.2. Electrolysis at the 7A Scale
2.2.1. Electrolyte Synthesis
2.2.2. Cell Preparation
2.2.3. Electrolytic Reduction at the 7A Scale
2.2.4. Post-Experiment Observation
2.3. Thermodynamic Analysis of Cu/Fe Deposition: Equilibration
3. Results
3.1. Electrochemical Decomposition of Chalcopyrite
3.2. Thermodynamic Analysis of Selective Deposition
3.3. Copper Deposition
4. Discussion: Towards a Fully Electrified Step
4.1. A New Process Flowsheet
4.2. Sulfidation
4.3. Oxide Phase Separation
4.4. Deposition of Electro-Negative and electro-positive elements
4.5. Refining and Casting
4.6. Economic Feasibility
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frame, L. Reconstructing Ancient Technologies: Chalcolithic Crucible Smelting at Tal-i Iblis, Iran. In Scientific Research on Ancient Asian Metallurgy: Proceedings of the Fifth Forbes Symposium at the Freer Gallery of Art; Archetype Books: London, UK, 2012; pp. 183–204. [Google Scholar]
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper, 5th ed.; Elsevier: Oxford, UK, 2011; ISBN 9788578110796. [Google Scholar]
- Kojo, I.V.; Jokilaakso, A.; Hanniala, P. Flash Smelting and Converting Furnaces: A 50 Year Retrospect. JOM 2000, 52, 57–61. [Google Scholar] [CrossRef]
- Matos, G.R.; Miller, L.D.; Barry, J.J. Historical Global Statistics for Mineral and Material Commodities; Copper: Reston, VA, USA, 2015. [Google Scholar]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B. Copper Demand, Supply, and Associated Energy Use to 2050. Glob. Environ. Chang. 2016, 39, 305–315. [Google Scholar] [CrossRef]
- Attwood, J. The World Will Need 10 Million Tons More Copper to Meet Demand; Bloomberg: New York, NY, USA, 2022. [Google Scholar]
- Valenta, R.K.; Kemp, D.; Owen, J.R.; Corder, G.D.; Lèbre, E. Re-Thinking Complex Orebodies: Consequences for the Future World Supply of Copper. J. Clean. Prod. 2019, 220, 816–826. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling Future Copper Ore Grade Decline Based on a Detailed Assessment of Copper Resources and Mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Lezak, S.; Cannon, C.; Blank, T.K. Low-Carbon Metals for a Low-Carbon World: A New Energy Paradigm for Mines; Rocky Mountain Institute: Boulder, CO, USA, 2019. [Google Scholar]
- Redniss, L. Oak Flat: A Fight for Sacred Land in the American West; Random House: New York, NY, USA, 2020. [Google Scholar]
- Xu, B.; Ma, Y.; Gao, W.; Yang, J.; Yang, Y.; Li, Q.; Jiang, T. A Review of the Comprehensive Recovery of Valuable Elements from Copper Smelting Open-Circuit Dust and Arsenic Treatment. JOM 2020, 72, 3860–3875. [Google Scholar] [CrossRef]
- Safarzadeh, M.S.; Moats, M.S.; Miller, J.D. Recent Trends in the Processing of Enargite Concentrates. Miner. Process. Extr. Metall. Rev. 2014, 35, 283–367. [Google Scholar] [CrossRef]
- Davidson, V. Copper Market Outlook: Transitioning to Deficits. In Proceedings of the Copper to World Conference, Santiago, Chile, 3–5 April 2017. [Google Scholar]
- Fu, X.; Olivetti, E.A. High-Resolution Insight into Materials Criticality: Quantifying Risk for By- Product Metals from Primary Production: Quantifying Risk for By-Product High-Resolution Insight into Materials Criticality: Quantifying Risk for Byproduct Metals from Primary. J. Ind. Ecol. 2018, 23, 452–465. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Electrolytic Refining. In Extractive Metallurgy of Copper, 5th ed.; Elsevier: Oxford, UK, 2011; ISBN 9788578110796. pp. 251–280. [Google Scholar]
- Kavlak, G.; Graedel, T.E. Global Anthropogenic Selenium Cycles for 1940–2010. Resour. Conserv. Recycl. 2013, 73, 17–22. [Google Scholar] [CrossRef]
- Kavlak, G.; Graedel, T.E. Global Anthropogenic Tellurium Cycles for 1940–2010. Resour. Conserv. Recycl. 2013, 76, 21–26. [Google Scholar] [CrossRef]
- Moats, M.; Alagha, L.; Awuah-Offei, K. Towards Resilient and Sustainable Supply of Critical Elements from the Copper Supply Chain: A Review. J. Clean. Prod. 2021, 307, 127207. [Google Scholar] [CrossRef]
- Francescone, K. Tracing Indium Production to the Mines of the Cerro Rico de Potosí. Econ. Anthropol. 2018, 6, 110–122. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). The Role of Critical Minerals in Clean Energy Transitions; IEA: Paris, France, 2021.
- Granata, G.; Miura, A.; Liu, W.; Pagnanelli, F.; Tokoro, C. Iodide-Assisted Leaching of Chalcopyrite in Acidic Ferric Sulfate Media. Hydrometallurgy 2019, 186, 244–251. [Google Scholar] [CrossRef]
- Habashi, F. Abandoned but Not Forgotten—The Recent History of Copper Hydrometallurgy. Metall 2006, 60, 459–465. [Google Scholar]
- Peters, E. Direct Leaching of Sulfides: Chemistry and Applications. Met. Trans. B 1976, 7, 505–517. [Google Scholar] [CrossRef]
- Habashi, F.; Yostos, B.I. Copper From Chalcopyrite By Direct Reduction. J. Met. 1977, 29, 11–16. [Google Scholar] [CrossRef]
- Murthy, G.G.K.; Elliott, J.F. Smelting of Iron-Oxy-Sulfide Melts Using Solid Carbon. ISIJ Int. 1994, 34, 548–554. [Google Scholar] [CrossRef]
- Coursol, P.; Mackey, P.J. Energy Consumption in Copper Sulphide Smelting. Mater. Sci. 2010, 2, 649–668. [Google Scholar]
- Moreno-Leiva, S.; Haas, J.; Junne, T.; Valencia, F.; Godin, H.; Kracht, W.; Nowak, W.; Eltrop, L. Renewable Energy in Copper Production: A Review on Systems Design and Methodological Approaches. J. Clean. Prod. 2020, 246, 118978. [Google Scholar] [CrossRef]
- Townsend, C. Process for the Reduction of Ores; United States Pattent Office: Brooklyn, NY, USA, 1906. [Google Scholar]
- Ge, X.L.; Seetharaman, S. The Salt Extraction Process—A Novel Route for Metal Extraction Part 2—Cu/Fe Extraction from Copper Oxide and Sulphides. Miner. Process. Extr. Metall. 2012, 119, 93–100. [Google Scholar] [CrossRef]
- Tan, M.; He, R.; Yuan, Y.; Wang, Z.; Jin, X. Electrochemical Sulfur Removal from Chalcopyrite in Molten NaCl-KCl. Electrochim. Acta 2016, 213, 148–154. [Google Scholar] [CrossRef]
- Kartal, L.; Timur, S. Direct Electrochemical Reduction of Copper Sulfide in Molten Borax. Int. J. Miner. Metall. Mater. 2019, 26, 992–998. [Google Scholar] [CrossRef]
- Sokhanvaran, S.; Lee, S.; Lambotte, G.; Allanore, A. Electrochemistry of Molten Sulfides: Copper Extraction from BaS-Cu2S. J. Electrochem. Soc. 2016, 163, 115–120. [Google Scholar] [CrossRef]
- Daehn, K.; Allanore, A. Electrolytic Production of Copper from Chalcopyrite. Curr. Opin. Electrochem. 2020, 22, 110–119. [Google Scholar] [CrossRef]
- Stinn, C.; Allanore, A. Selective Sulfidation of Metal Compounds. Nature 2021, 602, 78–83. [Google Scholar] [CrossRef]
- Stinn, C.; Nose, K.; Okabe, T.; Allanore, A. Experimentally Determined Phase Diagram for the Barium Sulfide-Copper (I) Sulfide System Above 873 K (600 °C). Metall. Mater. Trans. B 2017, 48, 2922–2929. [Google Scholar] [CrossRef]
- Boury, C.; Allanore, A. Liquid State Properties and Solidification Features of the Pseudo Binary BaS-La2S3. Sci. Rep. 2021, 11, 18189. [Google Scholar] [CrossRef]
- Allanore, A. Features and Challenges of Molten Oxide Electrolytes for Metal Extraction. J. Electrochem. Soc. 2014, 162, E13–E22. [Google Scholar] [CrossRef]
- Winkel, L.; Wochele, J.; Ludwig, C.; Alxneit, I.; Sturzenegger, M. Decomposition of Copper Concentrates at High-Temperatures: An Efficient Method to Remove Volatile Impurities. Miner. Eng. 2008, 21, 731–742. [Google Scholar] [CrossRef]
- Nakanishi, B.R.; Allanore, A. Electrochemical Study of a Pendant Molten Alumina Droplet and Its Application for Thermodynamic Property Measurements of Al-Ir. J. Electrochem. Soc. 2017, 164, E460–E471. [Google Scholar] [CrossRef]
- Nakagawa, Y. Liquid Immiscibility in Copper-Iron and Copper-Cobalt Systems in the Supercooled State. Acta Metall. 1958, 6, 704–711. [Google Scholar] [CrossRef]
- Eichis, B.A.; Sokolova, T.G.; Velikanov, A.A. Influence of Additions of Na2S on the Electrochemical Properties of Liquid Silver Sulfide. Sov. Electrochem. 1971, 7, 1447–1449. [Google Scholar]
- Vivian, R.E. The Electrolysis of Molten Antimony Sulfide. Trans. Electrochem. Soc. 1936, 69, 4. [Google Scholar] [CrossRef]
- Kaptay, G. The Conversion of Phase Diagrams of Solid Solution Type into Electrochemical Synthesis Diagrams for Binary Metallic Systems on Inert Cathodes. Electrochim. Acta 2012, 60, 401–409. [Google Scholar] [CrossRef]
- Wagner, M.-E.; Allanore, A. Non-Standard State Thermodynamics of Metal Electrodeposition. Electrochim. Acta 2021, 389, 138442. [Google Scholar] [CrossRef]
- Wang, C.; Nagasaka, T.; Hino, M.; Ban-Ya, S. Copper Distribution between FeS-Alkaline or -Alkaline Earth Metal Sulfide Fluxes and Carbon Saturated Iron Melt. ISIJ Int. 1991, 31, 1309–1315. [Google Scholar] [CrossRef]
- Sahu, S.K.; Chmielowiec, B.; Allanore, A.; Member, I.S.E. Electrochimica Acta Electrolytic Extraction of Copper, Molybdenum and Rhenium from Molten Sul Fi de Electrolyte. Electrochim. Acta 2017, 243, 382–389. [Google Scholar] [CrossRef]
- Daehn, K.E.; Benderly-Kremen, E.; YAGI, R.; Stinn, C.; Boury, C.; Rush, L.T.; Wagner, M.-E.; Allanore, A. Scaling up Molten Sulfide Electrolysis for Liquid Copper Production from Chalcopyrite. In Proceedings of the Copper 2022 Conference, Santiago, Chile, 13–17 November 2022. [Google Scholar]
- Allanore, A. Electrochemical Engineering for Commodity Metals Extraction. Electrochem. Soc. Interface 2017, 26, 63–68. [Google Scholar] [CrossRef]
- Dong, D.; van Oers, L.; Tukker, A.; van der Voet, E. Assessing the Future Environmental Impacts of Copper Production in China: Implications of the Energy Transition. J. Clean. Prod. 2020, 274, 122825. [Google Scholar] [CrossRef]
- Behar, O.; Peña, R.; Kouro, S.; Kracht, W.; Fuentealba, E.; Moran, L.; Sbarbaro, D. The Use of Solar Energy in the Copper Mining Processes: A Comprehensive Review. Clean. Eng. Technol. 2021, 4, 100259. [Google Scholar] [CrossRef]
- Stinn, C.; Allanore, A. Selective Sulfidation for Rare Earth Element Separation. In Rare Metal Technology 2022; Ouchi, T., Ed.; The Minerals, Metals & Materials Society: Cham, Switzerland, 2022; pp. 259–278. [Google Scholar]
- Stinn, C.; Gutierrez, C.; Daehn, K.E.; Allanore, A. Sulfidation for Copper Mineral Processing and Impurity Management. In Proceedings of the Copper 2022 Conference, Santiago, Chile, 13–17 November 2022. [Google Scholar]
- Morcali, M.; Khajavi, L.T.; Dreisinger, D.B. Extraction of Nickel and Cobalt from Nickeliferous Limonitic Laterite Ore Using Borax Containing Slags. Int. J. Miner. Process. 2017, 167, 27–34. [Google Scholar] [CrossRef]
- Daehn, K.E.; Serrenho, A.C.; Allwood, J. Finding the Most Efficient Way to Remove Residual Copper from Steel Scrap. Metall. Mater. Trans. B 2019, 50, 1225–1240. [Google Scholar] [CrossRef]
- Hormesa. Conticast Copper Scrap Fire Refining Process. Available online: https://hormesa-group.com/wp-content/uploads/2018/09/Catalogo-piro-refinacion-–-Fire-refining-catalog.pdf (accessed on 25 August 2022).
- Stinn, C.; Allanore, A. Estimating the Capital Costs of Electrowinning Processes. Electrochem. Soc. Interface 2020, 29, 44–49. [Google Scholar] [CrossRef]
- McRae, M. Barite; Minerals Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2022.
- Cordier, D. Rare Earths; Minerals Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2022.
- Graedel, T.E.; Harper, E.M.; Nassar, N.T.; Nuss, P.; Reck, B.K.; Turner, B.L. Criticality of Metals and Metalloids. Proc. Natl. Acad. Sci. USA 2015, 112, 4257–4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Element | wt% |
---|---|
Copper | 25.8 |
Iron | 31.65 |
Sulfur | 28.85 |
Silicon | 3.1 |
Zinc | 0.24 |
Aluminum | 0.645 |
Lead | <0.01 |
Arsenic | <0.01 |
Gold | <0.01 |
Silver | 0.12 |
Molybdenum | 0.18 |
Calcium | 0.395 |
Sodium | 0.215 |
Carbon | 0.145 |
Hydrogen | 0.385 |
Oxygen | 5.5 |
Phase | wt% |
---|---|
CuFeS2 (chalcopyrite) | 49.0 |
FeS2 (pyrite) | 11.8 |
Cu(SO4)(H2O)5 (chalcanthite) | 26.3 |
Cu4(SO4)(OH)6 (brochantite) | 5.3 |
SiO2 (quartz) | 5.6 |
Unknown phases | ~2 |
Phase | wt% |
---|---|
CuFeS2 (chalcopyrite) | 87.9 |
FeS2 (pyrite) | 4.8 |
(Cu10Fe2)S4 (nukundamite) | 3.2 |
FeO(OH) (Lepidocrocite) | 2.5 |
SiO2 (quartz) | 1.6 |
ID | Natural Chalcopyrite | Slight Cu2S Enrichment | Moderate Cu2S Enrichment | High Cu2S Enrichment | Maximum Cu2S Enrichment |
---|---|---|---|---|---|
Molar fraction Cu, Fe | 0.5 Cu, 0.5 Fe | 0.65 Cu, 0.35 Fe | 0.75 Cu, 0.25 Fe | 0.85 Cu, 0.15 Fe | 0.95 Cu, 0.05 Fe |
Molar ratio Cu:Fe | 1:1 | 1.86:1 | 3:1 | 5.67:1 | 19:1 |
Composition (wt%) | |||||
Fe | 3.6 | 2.4 | 1.6 | 0.9 | 0.24 |
Cu | 3.7 | 5 | 6.2 | 6.9 | 7.6 |
S | 21.4 | 21.8 | 20.2 | 20.8 | 20 |
La | 31.4 | 30.3 | 28.1 | 32 | 30.6 |
Ba | 44.7 | 46 | 46.9 | 41.8 | 42.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daehn, K.E.; Stinn, C.; Rush, L.; Benderly-Kremen, E.; Wagner, M.E.; Boury, C.; Chmielowiec, B.; Gutierrez, C.; Allanore, A. Liquid Copper and Iron Production from Chalcopyrite, in the Absence of Oxygen. Metals 2022, 12, 1440. https://doi.org/10.3390/met12091440
Daehn KE, Stinn C, Rush L, Benderly-Kremen E, Wagner ME, Boury C, Chmielowiec B, Gutierrez C, Allanore A. Liquid Copper and Iron Production from Chalcopyrite, in the Absence of Oxygen. Metals. 2022; 12(9):1440. https://doi.org/10.3390/met12091440
Chicago/Turabian StyleDaehn, Katrin E., Caspar Stinn, Lucas Rush, Ethan Benderly-Kremen, Mary Elizabeth Wagner, Charles Boury, Brian Chmielowiec, Carolina Gutierrez, and Antoine Allanore. 2022. "Liquid Copper and Iron Production from Chalcopyrite, in the Absence of Oxygen" Metals 12, no. 9: 1440. https://doi.org/10.3390/met12091440
APA StyleDaehn, K. E., Stinn, C., Rush, L., Benderly-Kremen, E., Wagner, M. E., Boury, C., Chmielowiec, B., Gutierrez, C., & Allanore, A. (2022). Liquid Copper and Iron Production from Chalcopyrite, in the Absence of Oxygen. Metals, 12(9), 1440. https://doi.org/10.3390/met12091440