High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Equation of State
3.2. Spall Strength
3.3. Fractography Analysis
4. Conclusions
- Determination of Hugoniot EOS coefficient and bulk sound speed can be determined from PDV measurements. These results are reliant upon HEL data from similar materials to be available.
- Future EOS determination can be improved through testing across a wider range of impact velocities and the implementation of an improved heterodyne PDV system compared to the available homodyne system used in this study.
- Spall strength determination using the free surface velocity of the HEA targets showed measured spall strength approximately increased material spall strength at higher strain rates.
- Achieving higher impact velocities with flyers of at least 50 µm thickness will produce greater spallation in the materials and lend greater confidence in the accurate assessment of the material’s spall strength.
- Post-shock recovered samples showed evidence of ductile fracture in spall regions. This spallation occurred both within and outside of the region predicted by the shock wave speeds.
- SEM imaging showed the presence of voids in areas outside of the predicted spall region. Furthermore, EDS elemental maps showed the presence of Cr-rich oxides as well as porosities within the HEA samples.
- Porosities and Cr-oxides outside of the predicted spall region may have served as void nucleation sites, explaining spallation observed throughout post-impacted samples rather than analytically predicted regions.
- Further investigation into the exact microstructural features in the failure regions will better describe whether the voids’ formations are more attributable to the pores or low-Z constituents.
- Refinement of the manufacturing process to prevent the formation of the porosities and low-Z constituents may allow for increased spall strength in the material at high strain rates.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dada, M.; Popoola, P.; Adeosun, S.; Mathe, N. High Entropy Alloys for Aerospace Applications. Aerodynamics 2021, 7, 1–16. [Google Scholar] [CrossRef]
- Dixit, S.; Rodriguez, S.; Jones, M.R.; Buzby, P.; Dixit, R.; Argibay, N.; DelRio, F.W.; Lim, H.H.; Fleming, D. Refractory High-Entropy Alloy Coatings for High-Temperature Aerospace and Energy Applications. J. Therm. Spray Technol. 2022, 31, 1021–1031. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, Q.; Lu, J.; Liu, C.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2015, 19, 349–362. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Gali, A.; George, E. Tensile properties of high- and medium-entropy alloys. Intermetallics 2013, 39, 74–78. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, M.M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S.X.; George, E.; Yu, Q.; Ritchie, R.O. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 2015, 6, 10143. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, S.; Wang, H. Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy. Mater. Sci. Eng. A 2020, 802, 140440. [Google Scholar] [CrossRef]
- Hawkins, M.C.; Thomas, S.A.; Hixon, R.S.; Gigax, J.; Li, N.; Fensin, S. Dynamic Properties of FeCrMnNi, a High Entropy Alloy; Nevada National Security Site (NNSS): North Las Vegas, NV, USA, 2021. [Google Scholar]
- Jiang, Z.J.; He, J.Y.; Wang, H.Y.; Zhang, H.S.; Lu, Z.P.; Dai, L.H. Shock compression response of high entropy alloys. Mater. Res. Lett. 2016, 4, 226–232. [Google Scholar] [CrossRef]
- Peralta, P.; Digiacomo, S.; Hashemian, S.; Luo, S.-N.; Paisley, D.; Dickerson, R.; Loomis, E.; Byler, D.; McClellan, K.; D’Armas, H. Characterization of Incipient Spall Damage in Shocked Copper Multicrystals. Int. J. Damage Mech. 2008, 18, 393–413. [Google Scholar] [CrossRef]
- Fujiwara, H.; Brown, K.E.; Dlott, D.D. High-energy flat-top beams for laser launching using a Gaussian mirror. Appl. Opt. 2010, 49, 3723–3731. [Google Scholar] [CrossRef]
- Brown, K.E.; Shaw, W.L.; Zheng, X.; Dlott, D. Simplified laser-driven flyer plates for shock compression science. Rev. Sci. Instrum. 2012, 83, 103901. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.D.; Banishev, A.A.; Shaw, W.L.; Dlott, D.D. Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry. Rev. Sci. Instrum. 2014, 85, 043908. [Google Scholar] [CrossRef]
- Mallick, D.; Zhao, M.; Parker, J.; Kannan, V.; Bosworth, B.; Sagapuram, D.; Foster, M.; Ramesh, K. La-ser-driven flyers and nanosecond-resolved velocimetry for spall studies in thin metal foils. Exp. Mech. 2019, 59, 611–628. [Google Scholar] [CrossRef]
- Mallick, D.D.; Ramesh, K. Dynamic fragmentation of boron carbide using laser-driven flyers. Int. J. Impact Eng. 2019, 136, 103416. [Google Scholar] [CrossRef]
- Luo, S.N.; Swift, D.C.; Tierney, T.E.; Paisley, D.L.; Kyrala, G.A.; Johnson, R.P.; Hauer, A.A.; Tschauner, O.; Asimow, P.D. Laser-induced shock waves in condensed matter: Some techniques and applications. High Press. Res. 2004, 24, 409–422. [Google Scholar] [CrossRef]
- Swift, D.C.; Niemczura, J.G.; Paisley, D.L.; Johnson, R.P.; Luo, S.-N.; Iv, T.E.T. Laser-launched flyer plates for shock physics experiments. Rev. Sci. Instrum. 2005, 76, 093907. [Google Scholar] [CrossRef]
- Shui, M.; Chu, G.; Zhu, B.; He, W.; Xi, T.; Fan, W.; Xin, J.; Gu, Y. Hypervelocity launching of flyers at the SG-III prototype laser facility. J. Appl. Phys. 2016, 119, 035903. [Google Scholar] [CrossRef]
- Zhu, Y.; Liao, X.; Wu, X. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012, 57, 1–62. [Google Scholar] [CrossRef]
- Thürmer, D.; Zhao, S.; Deluigi, O.R.; Stan, C.; Alhafez, I.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M.; Gunkelmann, N. Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. J. Alloys Compd. 2021, 895, 162567. [Google Scholar] [CrossRef]
- Melia, M.A.; Carroll, J.D.; Whetten, S.R.; Esmaeely, S.N.; Locke, J.; White, E.; Anderson, I.; Chandross, M.; Michael, J.R.; Argibay, N.; et al. Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy. Addit. Manuf. 2019, 29. [Google Scholar] [CrossRef]
- Dhiman, A.; Olokun, A.; Tomar, V. Microscale Analysis of Stress Wave Propagation through Plastic Bonded Explosives under Micro-Sphere Shock Impact. J. Dyn. Behav. Mater. 2021, 7, 294–306. [Google Scholar] [CrossRef]
- Dhiman, A.; Rai, A.; Wang, H.; Prakash, C.; Tomar, V. Dynamic Stress Evaluation due to Hypervelocity Impact using Time Gated Raman Spectroscopy. DYMAT Winter Sch. 2020, 12, 1–6. [Google Scholar]
- Marsh, S.P. LASL Shock Hugoniot Data; University of California press: Berkeley, CA, USA, 1980. [Google Scholar]
- Meyers, M.A. Dynamic Behavior of Materials; John wiley & sons: New York, NY, USA, 1994. [Google Scholar]
- Thomas, S.; Hawkins, M.; Matthes, M.; Gray III, G.; Hixson, R. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel. J. Appl. Phys. 2018, 123, 175902. [Google Scholar] [CrossRef]
- Holtkamp, D.B. Survey of Optical Velocimetry Experiments Applications of PDV, A Heterodyne Velocimeter. In Proceedings of the 2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics, Santa Fe, NM, USA, 5–10 November 2006; pp. 119–128. [Google Scholar] [CrossRef]
- Kettenbeil, C.; Mello, M.; Bischann, M.; Ravichandran, G. Heterodyne transverse velocimetry for pressure-shear plate impact experiments. J. Appl. Phys. 2018, 123, 125902. [Google Scholar] [CrossRef]
- Mallick, D.; Zhao, M.; Bosworth, B.; Schuster, B.; Foster, M.; Ramesh, K. A Simple Dual-Beam Time-Multiplexed Photon Doppler Velocimeter for Pressure-Shear Plate Impact Experiments. Exp. Mech. 2018, 59, 41–49. [Google Scholar] [CrossRef]
- Wayne, L.; Krishnan, K.; DiGiacomo, S.; Kovvali, N.; Peralta, P.; Luo, S.; Greenfield, S.; Byler, D.; Paisley, D.; McClellan, K. Statistics of weak grain boundaries for spall damage in polycrystalline copper. Scr. Mater. 2010, 63, 1065–1068. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehler, A.; Dhiman, A.; Dillard, T.; Dingreville, R.; Barrick, E.; Kustas, A.; Tomar, V. High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy. Metals 2022, 12, 1482. https://doi.org/10.3390/met12091482
Ehler A, Dhiman A, Dillard T, Dingreville R, Barrick E, Kustas A, Tomar V. High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy. Metals. 2022; 12(9):1482. https://doi.org/10.3390/met12091482
Chicago/Turabian StyleEhler, Andrew, Abhijeet Dhiman, Tyler Dillard, Remi Dingreville, Erin Barrick, Andrew Kustas, and Vikas Tomar. 2022. "High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy" Metals 12, no. 9: 1482. https://doi.org/10.3390/met12091482
APA StyleEhler, A., Dhiman, A., Dillard, T., Dingreville, R., Barrick, E., Kustas, A., & Tomar, V. (2022). High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy. Metals, 12(9), 1482. https://doi.org/10.3390/met12091482