Achieving Tunable Microwave Absorbing Properties by Phase Control of NiCoMnSn Alloy Flakes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, H.; Zhang, Z.; Hussain, G.; Zhou, L.; Li, Q.; Ostrikov, K. Techniques to enhance magnetic permeability in microwave absorbing materials. Appl. Mater. Today 2020, 19, 100596. [Google Scholar] [CrossRef]
- Kuang, D.T.; Hou, L.Z.; Wang, S.L.; Luo, H.; Deng, L.W.; Mead, J.L.; Huang, H.; Song, M. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon 2019, 153, 52–61. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, L.M.; Wu, H.J. Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: Review and perspective. J. Phys. D-Appl. Phys. 2021, 54, 37. [Google Scholar] [CrossRef]
- Feng, J.; Li, Z.; Li, D.; Yang, B.; Li, L.; Zhao, X.; Zuo, L. Enhanced electromagnetic wave absorption properties of Ni2MnGa microparticles due to continuous dual-absorption peaks. J. Alloys Compd. 2020, 816, 152588. [Google Scholar] [CrossRef]
- Feng, J.; Li, Z.B.; Jia, Y.S.; Yang, B.; Liu, S.J.; Zhao, X.; Li, L.W.; Zuo, L. Significant high-frequency electromagnetic wave absorption performance of Ni2+xMn1−x Ga alloys. J. Mater. Sci. 2018, 53, 11779–11790. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, L.; Zhang, Y.; Yuan, W.; Pan, H.; Wu, H. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics. Compos. Part A-Appl. Sci. Manuf. 2018, 104, 68–80. [Google Scholar] [CrossRef]
- Shen, J.Y.; Zhang, D.F.; Wu, Q.B.; Wang, Y.; Gao, H.; Yu, J.L.; Zeng, G.X.; Zhang, H.Y. Pyrolysis-controlled FeCoNi@hard carbon composites with facilitated impedance matching for strong electromagnetic wave response. J. Mater. Chem. C 2021, 9, 13447–13459. [Google Scholar] [CrossRef]
- Shu, J.C.; Huang, X.Y.; Cao, M.S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 2021, 174, 638–646. [Google Scholar] [CrossRef]
- Guo, L.; He, Y.; Chen, D.; Du, B.; Cao, W.; Lv, Y.; Ding, Z. Hydrothermal synthesis and microwave absorption properties of nickel ferrite/multiwalled carbon nanotubes composites. Coatings 2021, 11, 534. [Google Scholar] [CrossRef]
- Chen, T.T.; Deng, F.; Zhu, J.; Chen, C.F.; Sun, G.B.; Ma, S.L.; Yang, X.J. Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 2012, 22, 15190–15197. [Google Scholar] [CrossRef]
- Pan, G.H.; Zhu, J.; Ma, S.L.; Sun, G.B.; Yang, X.J. Enhancing the Electromagnetic Performance of Co through the Phase-Controlled Synthesis of Hexagonal and Cubic Co Nanocrystals Grown on Graphene. ACS Appl. Mater. Interfaces 2013, 5, 12716–12724. [Google Scholar] [CrossRef] [PubMed]
- Kuang, D.T.; Hou, L.Z.; Wang, S.L.; Yu, B.W.; Deng, L.W.; Lin, L.W.; Huang, H.; He, J.; Song, M. Enhanced electromagnetic wave absorption of Ni-C core-shell nanoparticles by HCP-Ni phase. Mater. Res. Express 2018, 5, 095013. [Google Scholar] [CrossRef]
- Pérez-Sierra, A.; Pons, J.; Santamarta, R.; Vermaut, P.; Ochin, P. Solidification process and effect of thermal treatments on Ni–Co–Mn–Sn metamagnetic shape memory alloys. Acta Mater. 2015, 93, 164–174. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Yang, B.; He, X.; Gan, W.; Zhang, Y.; Li, Z.; Zhang, Y.; Esling, C.; Zhao, X.; et al. Over 2% magnetic-field-induced strain in a polycrystalline Ni 50 Mn 28.5 Ga 21.5 alloy prepared by directional solidification. Mater. Sci. Eng. A 2020, 780, 139170. [Google Scholar] [CrossRef]
- Chen, F.; Huang, Q.; Jiang, Z.; Zhang, M.; Xu, X.; Zhang, Q.; Zhao, J. A switch-like magnetoresistance of ferromagnetic Ni-Mn-Ga ribbon during martensitic transformation. Mater. Lett. 2015, 160, 428–431. [Google Scholar] [CrossRef]
- Huang, L.; Cong, D.Y.; Ren, Y.; Wei, K.X.; Wang, Y.D. Effect of Al substitution on the magnetocaloric properties of Ni-Co-Mn-Sn multifunctional alloys. Intermetallics 2020, 119, 106706. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.J.; Zhao, F. Study on the electromagnetic properties and microwave absorbing mechanism of flaky FeSiAl alloy based on annealing and phosphate coating. Mater. Res. Express 2021, 8, 13. [Google Scholar] [CrossRef]
- Feng, Y.B.; Tang, C.M.; Qiu, T. Effect of ball milling and moderate surface oxidization on the microwave absorption properties of FeSiAl composites. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2013, 178, 1005–1011. [Google Scholar] [CrossRef]
- Liu, L.L.; Kuang, D.T.; Hou, L.Z.; Luo, H.; Deng, L.W.; Wang, S.L. Synthesis and microwave absorption performance of layered hard carbon embedded with ZnO nanoparticles. J. Alloys Compd. 2022, 895, 12. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Kuang, D.; Lu, J.; Yang, J.; Peng, X.; Wu, A. Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties. Materials 2022, 15, 6068. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Deng, L.; Liu, S.; Yan, S.; Luo, H.; Li, Y.; He, L.; Huang, S. Enhanced microwave absorption properties of Fe3O4-modified flaky FeSiAl. J. Magn. Magn. Mater. 2017, 444, 49–53. [Google Scholar] [CrossRef]
- Qiao, L.; Han, R.; Wang, T.; Tang, L.Y.; Li, F.S. Greatly enhanced microwave absorbing properties of planar anisotropy carbonyl-iron particle composites. J. Magn. Magn. Mater. 2015, 375, 100–105. [Google Scholar] [CrossRef]
- Chen, F.; Tong, Y.; Huang, Y.; Tian, B.; Li, L.; Zheng, Y. Suppression of γ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. Intermetallics 2013, 36, 81–85. [Google Scholar] [CrossRef]
- Wang, F.Y.; Sun, Y.Q.; Li, D.R.; Zhong, B.; Wu, Z.G.; Zuo, S.Y.; Yan, D.; Zhuo, R.F.; Feng, J.J.; Yan, P.X. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon 2018, 134, 264–273. [Google Scholar] [CrossRef]
- Yan, S.J.; Xu, C.Y.; Jiang, J.T.; Liu, D.B.; Wang, Z.Y.; Tang, J.; Zhen, L. Strong dual-frequency electromagnetic absorption in Ku-band of C@FeNi3 core/shell structured microchains with negative permeability. J. Magn. Magn. Mater. 2014, 349, 159–164. [Google Scholar] [CrossRef]
- Shi, X.L.; Cao, M.S.; Yuan, J.; Zhao, Q.L.; Kang, Y.Q.; Fang, X.Y.; Chen, Y.J. Nonlinear resonant and high dielectric loss behavior of CdS/alpha-Fe2O3 heterostructure nanocomposites. Appl. Phys. Lett. 2008, 93, 183118. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, Y.; Zhou, C.H.; Lv, H.P.; Chen, S.; Chen, Y.; Gao, S.M.; Zhang, B.B. A facile strategy for the core-shell FeSiAl composites with high-efficiency electromagnetic wave absorption. J. Alloys Compd. 2020, 818, 8. [Google Scholar] [CrossRef]
- Sun, J.; Xu, H.L.; Shen, Y.; Bi, H.; Liang, W.F.; Yang, R.B. Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloys Compd. 2013, 548, 18–22. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Guo, Y.; Ali, R.; Tian, W.; Liu, Y.F.; Zhang, L.; Wang, X.; Zhang, L.B.; Yin, L.J.; Su, H.; et al. Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloys Compd. 2020, 828, 9. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Chuai, D.; Chen, Y.; Yu, R. Flaky FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption. Sci. Rep. 2016, 6, 35377. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.J.; Lin, Y.; Zong, H.W.; Yang, H.B.; Wang, L.; Dai, Z.H. Three-Dimensional Architecture Reduced Graphene Oxide-LiFePO4 Composite: Preparation and Excellent Microwave Absorption Performance. Inorg. Chem. 2019, 58, 2031–2041. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.; Shi, X.; Huang, M.; Li, X.; Zeng, Q.; Che, R. Recent progress of microwave absorption microspheres by magnetic–dielectric synergy. Nanoscale 2021, 13, 2136–2156. [Google Scholar] [CrossRef]
- Kuang, D.; Wang, S.; Hou, L.; Luo, H.; Deng, L.; Song, M.; He, J.; Huang, H. Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles. Mater. Res. Bull. 2020, 126, 110837. [Google Scholar] [CrossRef]
- Yan, S.; Zhen, L.; Xu, C.; Jiang, J.; Shao, W.; Tang, J. Synthesis, characterization and electromagnetic properties of Fe1−xCox alloy flower-like microparticles. J. Magn. Magn. Mater. 2011, 323, 515–520. [Google Scholar] [CrossRef]
- Birame Gueye, P.G.; Lopez Sanchez, J.; Navarro, E.; Serrano, A.; Marin, P. Control of the Length of Fe73.5Si13.5Nb3CU1B9 Microwires to Be Used for Magnetic and Microwave Absorbing Purposes. ACS Appl. Mater. Interfaces 2020, 12, 15644–15656. [Google Scholar] [CrossRef] [PubMed]
- Archilla, D.; López-Sánchez, J.; Hernando, A.; Navarro, E.; Marín, P. Boosting the tunable microwave scattering signature of sensing array platforms consisting of amorphous ferromagnetic Fe2.25Co72.75Si10B15 microwires and its amplification by intercalating Cu microwires. Nanomaterials 2021, 11, 920. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, K.; Cheng, Y.; Qin, B.; Yan, S.; Luo, H.; Deng, L. Enhanced microwave absorbing properties of La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroics. J. Mater. Sci. -Mater. Electron. 2019, 30, 15619–15626. [Google Scholar] [CrossRef]
- Wang, R.; He, M.; Zhou, Y.; Nie, S.; Wang, Y.; Liu, W.; He, Q.; Wu, W.; Bu, X.; Yang, X. Self-assembled 3D flower-like composites of heterobimetallic phosphides and carbon for temperature-tailored electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2019, 11, 38361–38371. [Google Scholar] [CrossRef]
Absorbers | RLmin (dB) | tm (mm) | BWeff (GHz) | Reference |
---|---|---|---|---|
S-0h | −34.7 at 3.2 GHz | 4.0 | 10.2 (2.2–8.2,9.2–11.6,15.3–17.1) | This work |
S-6h | −56.4 at 8.8 GHz | 2.0 | 12.9 (2.5–14.4,17–18) | This work |
S-12h | −38.2 at 4.9 GHz | 3.0 | 12.8 (2.3–12.8,15.7–18) | This work |
Ni2MnGa | −49.1 at 13.3 GHz | 2.57 | 12.7 (6.3–18) | [5] |
Ni2MnGa | −65.2 at 14.4 GHz | 2.9 | 12.7 (6.3–18) | [4] |
Fe0.5Co0.5 | −46.7 at 8.47 GHz | 2.0 | 12.6 (5.4–18.0) | [34] |
Fe0.6Co0.4 | −48.9 at7.12 GHz | 2.5 | 12.5 (4.2–16.7) | [34] |
Fe73.5Si13.5Nb3Cu1B9 | −45.97 at 10.03 GHz | 2.6 | / | [35] |
Fe2.25Co72.75Si10B15 | −47.9 | / | / | [36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Xu, J.; Huang, L.; Kuang, D.; Liu, J.; Wang, G.; Zhang, Q.; Duan, Y. Achieving Tunable Microwave Absorbing Properties by Phase Control of NiCoMnSn Alloy Flakes. Metals 2022, 12, 1542. https://doi.org/10.3390/met12091542
Sun X, Xu J, Huang L, Kuang D, Liu J, Wang G, Zhang Q, Duan Y. Achieving Tunable Microwave Absorbing Properties by Phase Control of NiCoMnSn Alloy Flakes. Metals. 2022; 12(9):1542. https://doi.org/10.3390/met12091542
Chicago/Turabian StyleSun, Xiaogang, Jian Xu, Lian Huang, Daitao Kuang, Jinrong Liu, Guanxi Wang, Qifei Zhang, and Yonghua Duan. 2022. "Achieving Tunable Microwave Absorbing Properties by Phase Control of NiCoMnSn Alloy Flakes" Metals 12, no. 9: 1542. https://doi.org/10.3390/met12091542
APA StyleSun, X., Xu, J., Huang, L., Kuang, D., Liu, J., Wang, G., Zhang, Q., & Duan, Y. (2022). Achieving Tunable Microwave Absorbing Properties by Phase Control of NiCoMnSn Alloy Flakes. Metals, 12(9), 1542. https://doi.org/10.3390/met12091542