Sulfur Removal and Iron Extraction from Natrojarosite Residue of Laterite Nickel Ore Processing by Reduction Roasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Method
2.3. Thermodynamic Simulation Method
3. Results and Discussion
3.1. Sulfur Removal
3.2. Extraction of Iron from the Unroasted Natrojarosite
3.3. Extraction of Iron from the Roasted Natrojarosite
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabb, J. HPAL: Upping the pressure. Glob. Min. Res. 2018. Available online: https://gigametals.com/site/assets/files/4861/2018-03-19-hpal.pdf (accessed on 15 June 2022).
- Stanković, S.; Stopić, S.; Sokić, M.; Marković, B.; Friedrich, B. Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metall. Mater. Eng. 2020, 26, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Gultom, T.; Sianipar, A. High pressure acid leaching: A newly introduced technology in Indonesia. IOP Conf. Ser. 2020. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/413/1/012015 (accessed on 15 June 2022). [CrossRef]
- Shibayama, K.; Yokogawa, T.; Sato, H.; Enomoto, M.; Nakai, O.; Ito, T.; Mizuno, F.; Hattori, Y. Taganito HPAL plant project. Miner Eng. 2016, 88, 61–65. [Google Scholar] [CrossRef]
- Lei, M.; Ma, B.; Chen, Y.; Liu, W.; Liu, B.; Lv, D.; Zhang, W.; Wang, C. Effective separation and beneficiation of iron and chromium from laterite sulfuric acid leach residue. ACS Sustain. Chem. Eng. 2020, 8, 3959–3968. [Google Scholar] [CrossRef]
- Ray, S.; Daudi, L.; Yadav, H.; Ransinchung, G.D. Utilization of jarosite waste for the development of sustainable concrete by reducing the cement content. J. Cleaner Prod. 2020, 272, 122546. [Google Scholar] [CrossRef]
- Ahamed, A.M.; Pons, M.N.; Ricoux, S.; Issa, S.; Goettmann, F.; Lapicque, F. New pathway for utilization of jarosite, an industrial waste of zinc hydrometallurgy. Miner. Eng. 2021, 170, 107030. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Di Cecca, C.; Barella, S.; Gruttadauria, A.; Ragona, M.; Pisu, M.; Viola, A. Characterization of cast iron and slag produced by jarosite sludges reduction via Arc Transferred Plasma (ATP) reactor. J. Environ. Chem. Eng. 2018, 6, 773–783. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Gruttadauria, A.; Spada, E. Jarosite wastes reduction through blast furnace sludges for cast iron production. J. Environ. Chem. Eng. 2019, 7, 102966. [Google Scholar] [CrossRef]
- Mombelli, D.; Gonçalves, D.L.; Mapelli, C.; Barella, S.; Gruttadauria, A. Processing and characterization of self-reducing briquettes made of jarosite and blast furnace sludges. J. Sustain. Metall. 2021, 7, 1603–1626. [Google Scholar] [CrossRef]
- Zhu, D.; Yang, C.; Pan, J.; Guo, Z.; Li, S. New pyrometallurgical route for separation and recovery of Fe, Zn, In, Ga and S from jarosite residues. J. Cleaner Prod. 2018, 205, 781–788. [Google Scholar] [CrossRef]
- Zulhan, Z.; Gibranata, I. Direct reduction of low grade nickel laterite ore to produce ferronickel using isothermal—Temperature gradient. AIP Conf. Proc. 2017, 1805, 040003. [Google Scholar] [CrossRef] [Green Version]
- Zulhan, Z.; Lo, F. Iron nugget formation from iron sand/coal composite pellets under isothermal-temperature gradient profiles. Ironmak. Steelmak. 2021, 48, 1022–1029. [Google Scholar] [CrossRef]
- Zulhan, Z.; Sutandar, C.L.; Suryani, I.; Basuki, E.A. Effect of temperature patterns on iron nugget formation in fluxless processing of titanomagnetite. Sci. Rep. 2022, 12, 8941. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. FactSage thermochemical software and databases—2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Frost, R.L.; Weier, M.L.; Martens, W. Thermal decomposition of jarosites of potassium, sodium and lead. J. Therm. Anal. Calorim. 2005, 82, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Desborough, G.A.; Smith, K.S.; Lowers, H.A.; Swayze, G.A.; Hammarstrom, J.M.; Diehl, S.F.; Leinz, R.W.; Driscoll, R.L. Mineralogical and chemical characteristics of some natural jarosites. Geochim. Cosmochim. Acta. 2010, 74, 1041–1056. [Google Scholar] [CrossRef] [Green Version]
- Kerolli-Mustafa, M.; Mandic, V.; Curkovic, L.; Sipusic, J. Investigation of thermal decomposition of jarosite tailing waste: A prerequisite for comprehensive jarosite reuse and waste minimization. J. Therm. Anal. Calorim. 2016, 123, 421–430. [Google Scholar] [CrossRef]
- Linsong, W.; Peng, Z.; Yu, F.; Sujun, L.; Yue, Y.; Li, W.; Wei, S. Recovery of metals from jarosite of hydrometallurgical nickel production by thermal treatment and leaching. Hydrometallurgy 2020, 198, 105493. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, L.; Liu, W.; Han, J.; Jiao, F.; Qin, W. Sulfidation and sulfur fixation of jarosite residues during reduction roasting. Metall. Mater. Trans. B 2019, 50, 761–771. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Zhang, G.; Kang, J.; Wang, C. Comprehensive recovery and recycle of jarosite residues from zinc hydrometallurgy. Chem. Eng. J. Adv. 2020, 3, 100023. [Google Scholar] [CrossRef]
NaFe3(SO4)2(OH)6 | CaSO4·2H2O | Fe2O3 | Al2(SO4)3·12H2O | MgSO4·2H2O | |
8.71 | 38.91 | 18.89 | 10.68 | 4.09 | |
NiSO4·6H2O | Cr2(SO4)3 | SiO2 | MnO2 | Moisture | Other |
9.03 | 0.75 | 2.80 | 1.73 | 3.92 | 0.45 |
Moisture | Ash | Volatile Matter | Fixed Carbon | Total Sulfur | Gross Calorific Value (Kcal/kg) |
---|---|---|---|---|---|
7.01 | 1.95 | 16.57 | 74.47 | 0.02 | 6.987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulhan, Z.; Adzana, Z.; Munawaroh, M.; Yusro, A.H.; Christian, J.D.; Saputri, A.D.; Hidayat, T. Sulfur Removal and Iron Extraction from Natrojarosite Residue of Laterite Nickel Ore Processing by Reduction Roasting. Metals 2023, 13, 52. https://doi.org/10.3390/met13010052
Zulhan Z, Adzana Z, Munawaroh M, Yusro AH, Christian JD, Saputri AD, Hidayat T. Sulfur Removal and Iron Extraction from Natrojarosite Residue of Laterite Nickel Ore Processing by Reduction Roasting. Metals. 2023; 13(1):52. https://doi.org/10.3390/met13010052
Chicago/Turabian StyleZulhan, Zulfiadi, Zhahrina Adzana, Mona Munawaroh, Achmad Haerul Yusro, Jonathan Dwiputra Christian, Aura Dwi Saputri, and Taufiq Hidayat. 2023. "Sulfur Removal and Iron Extraction from Natrojarosite Residue of Laterite Nickel Ore Processing by Reduction Roasting" Metals 13, no. 1: 52. https://doi.org/10.3390/met13010052
APA StyleZulhan, Z., Adzana, Z., Munawaroh, M., Yusro, A. H., Christian, J. D., Saputri, A. D., & Hidayat, T. (2023). Sulfur Removal and Iron Extraction from Natrojarosite Residue of Laterite Nickel Ore Processing by Reduction Roasting. Metals, 13(1), 52. https://doi.org/10.3390/met13010052