Research Progress on Corrosion Behaviors and Improvement Methods of Medical Degradable Mg−Based Alloys
Abstract
:1. Introduction
2. High−Purity and Amorphous
2.1. High−Purity Mg Alloys
2.2. Amorphous Mg Alloys
3. Micro−Alloying
3.1. Nutrient Elements
3.2. Rare−Earth Elements
3.3. Other Elements
4. Heat−Treatment
4.1. Homogenization−Treatment
4.2. Solution−Treatment
4.3. Aging−Treatment
5. Plastic−Deformation
5.1. Rolling−Deformation
5.2. Extrusion−Deformation
5.3. Other Plastic−Deformations
6. Surface Modification
6.1. Mechanical Surface Treatment
6.2. Inorganic Coating
6.3. Organic/Polymer Coating
6.4. Complex Coatings
7. Summary and Future Prospective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pradeep, N.B.; Rajath-Hegde, M.M.; Manjunath-Patel, G.C.; Giasin, K.; Pimenov, D.Y.; Wojciechowski, S. Synthesis and characterization of mechanically alloyed nanostructured ternary titanium based alloy for bio-medical applications. J. Mater. Res. Technol. 2022, 16, 88–101. [Google Scholar] [CrossRef]
- Xing, F.; Li, S.; Yin, D.D.; Xie, J.C.; Rommens, P.M.; Xiang, Z.; Liu, M.; Ritz, U. Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. J. Magnes. Alloys 2022, 10, 1428–1456. [Google Scholar] [CrossRef]
- Tipan, N.; Pandey, A.; Mishra, P. Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review. Mater. Today. Commun. 2022, 31, 103658. [Google Scholar] [CrossRef]
- Afifi, M.; Mehrez, E.E.; Shabbir, M.; Noweir, A.A.; Wageh, S.; Abu-Saied, M.A.; El-Morsy, M.A.; Salem, W.M.; Mostafa, M.S.; Salem, S.R.; et al. Chemical stability, morphological behavior of Mg/Sr-hydroxyapatite@chitosan biocomposites for medical applications. J. Mater. Res. Technol. 2022, 18, 681–692. [Google Scholar] [CrossRef]
- Bairagi, D.; Mandal, S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects. J. Magnes. Alloys 2022, 10, 627–669. [Google Scholar] [CrossRef]
- Arora, G.S.; Sathish, R.U.; Saxena, K.K. Critical review of Mg matrix composite for bio-implants through powder metallurgy. Mater. Today. Commun. 2022, 57, 902–907. [Google Scholar]
- Weng, W.J.; Arne, B.; Li, Y.C.; Matthew, D.; Cuie, W. A review of the physiological impact of rare earth elements and their uses in biomedical Mg alloys. Acta Biomater. 2021, 130, 80–97. [Google Scholar] [CrossRef]
- Chen, Y.J.; Xu, Z.G.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef]
- Erbel, R.; Mario, C.D.; Bartunek, J.; Bonnier, J.; Bruyne, B.D.; Eberli, F.R.; Erne, P.; Haude, M.; Heublein, B.; Horrigan, M. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: A prospective, non-randomised multicentre trial. Lancet 2007, 369, 1869–1875. [Google Scholar] [CrossRef]
- Cheng, P.F.; Han, P.; Zhao, C.L.; Zhang, S.X.; Wu, H.L.; Ni, J.H.; Hou, P.; Zhang, Y.Z.; Liu, J.Y.; Xu, H.D.; et al. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials 2016, 81, 14–26. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Kareem, S.A.; Olajide, J.L.; Sadiku, R.E.; Bodunrin, M.O. Computational biomechanical and biodegradation integrity assessment of Mg-based biomedical devices for cardiovascular and orthopedic applications: A review. Int. J. Light-Weight. Mater. Manuf. 2022, 5, 251–266. [Google Scholar] [CrossRef]
- Krishnan, R.; Pandiaraj, S.; Muthusamy, S.; Panchal, H.; Alsoufi, M.A.; Ibrahim, A.M.M.; Elsheikh, A. Biodegradable magnesium metal matrix composites for biomedical implants: Synthesis, mechanical performance, and corrosion behavior—A Re-view. J. Mater. Res. Technol. 2022, 20, 650–670. [Google Scholar] [CrossRef]
- Byun, S.H.; Lim, H.K.; Cheon, K.H.; Lee, S.M.; Kim, H.E.; Lee, J.H. Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw. J. Biomed. Mater. Res. 2020, 108, 2505–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tie, D.; Liu, H.N.; Guan, R.G.; Patricia, H.T.; Liu, Y.L.; Wang, Y.; Hort, N. In vivo assessment of biodegradable magnesium alloy ureteral stents in a pig model. Acta Biomater. 2020, 116, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Elkamel, R.S.; Fekry, A.M.; Ghoneim, A.A. Electrochemical corrosion behaviour of AZ91E magnesium alloy by means of various nanocoatings in aqueous peritoneal solution: In vitro and in vivo studies. J. Mater. Res. Technol. 2022, 17, 828–839. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.X.; Li, J.Y. Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid. J. Alloys Compd. 2017, 728, 37–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.X.; Li, J.Y. Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg-Zn-Mn-xNd in Kokubo’s solution. J. Alloys Compd. 2018, 730, 458–470. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.Y.; LIAW, P.K.; Xu, Y.Z.; Lai, H.Y. Effects of heat treatment on the mechanical properties and corrosion behaviour of the Mg-2Zn-0.2Mn-xNd alloys. J. Alloys Compd. 2018, 769, 552–565. [Google Scholar] [CrossRef]
- Cai, C.H.; Song, R.B.; Wen, E.D.; Wang, Y.J.; Li, J.Y. Effect of microstructure evolution on tensile fracture behavior of Mg-2Zn-1Nd-0.6Zr alloy for biomedical applications. Mater. Des. 2019, 182, 108038. [Google Scholar] [CrossRef]
- Li, J.X.; Zhang, Y.; Li, J.Y.; Xie, J.X. Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0. 5Sr alloy. J. Mater. Sci. Technol. 2017, 34, 299–310. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.Y.; Liu, Y.; Chen, L.S. Microstructure characteristics, film layer rupture mechanism and corrosion behavior of hot-rolled Mg-2Zn-0. 2Mn-xNd. Mater. Charact. 2020, 165, 110368. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zheng, R.N.; Zheng, Y.Q.; Chen, L.S. Microstructure characteristics, degradation behaviors and film formation mechanism of Zn-1Mg-0.25Nd-xSn in the Kokubo’s electrolyte. Mater. Charact. 2021, 174, 111034. [Google Scholar] [CrossRef]
- Cai, C.H.; Alves, M.M.; Song, R.B.; Wang, Y.J.; Li, J.Y.; Montemor, M.F. Non-destructive corrosion study on a magnesium alloy with mechanical properties tailored for biodegradable cardiovascular stent applications. J. Mater. Sci. Technol. 2021, 66, 128–138. [Google Scholar] [CrossRef]
- Woo, S.K.; Suh, B.C.; Kim, H.S.; Yim, C.D. Effect of processing history on corrosion behaviours of high purity Mg. Corros. Sci. 2021, 184, 109357. [Google Scholar] [CrossRef]
- Gao, Y.M.; Wang, L.Z.; Li, L.H.; Gu, X.N.; Zhang, K.; Xia, J.; Fan, Y.B. Effect of stress on corrosion of high-purity magnesium in vitro and in vivo. Acta Biomater. 2019, 83, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.Y.; Pokharel, D.B.; Dong, J.H.; Wu, L.P.; Zhao, R.Y.; Zhu, Y.; Hou, J.R.; Xie, J.Y.; Sui, S.H.; Wang, C.G.; et al. In vivo corrosion behavior of pure magnesium in femur bone of rabbit. J. Alloys Compd. 2020, 848, 156506. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Lu, H.; Sun, J. Long-term in vivo evolution of high-purity Mg screw degradation-Local and systemic effects of Mg degradation products. Acta Biomater. 2018, 71, 215–224. [Google Scholar] [CrossRef]
- Chen, B.; Wang, D.X.; Zhang, L.; Geng, G.H.; Yan, Z.J.; Eckert, J. Correlation between the crystallized structure of Mg67Zn28Ca5 amorphous alloy and the corrosion behavior in simulated body fluid. J. Non-Cryst. Solids 2021, 553, 120473. [Google Scholar] [CrossRef]
- Wang, C.M.; Yang, S.; Yang, Y.W.; Yang, Y.W.; Zeng, D.; Liang, X.W.; Peng, S.P.; Shuai, C.J. Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion. J. Alloys Compd. 2022, 897, 163247. [Google Scholar] [CrossRef]
- Zai, W.; Man, H.C.; Su, Y.C.; Li, G.Y.; Lian, J.S. Impact of microalloying element Ga on the glass-forming ability (GFA), mechanical properties and corrosion behavior of Mg-Zn-Ca bulk metallic glass. Mater. Chem. Phys. 2020, 255, 123555. [Google Scholar] [CrossRef]
- Li, K.; Li, B.H.; Du, P.; Xiang, T.; Yang, X.X.; Xie, G.Q. Effect of powder size on strength and corrosion behavior of Mg66Zn30Ca4 bulk metallic glass. J. Alloys Compd. 2022, 897, 163219. [Google Scholar] [CrossRef]
- Makkar, P.; Sarkar, S.K.; Padalhin, A.R.; Moon, B.G.; Lee, Y.S.; Lee, B.E. In vitro and in vivo assessment of biomedical Mg–Ca alloys for bone implant applications. J. Appl. Biomater. Funct. Mater. 2018, 16, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Zhao, Y.; Liu, C.L.; Li, Q.; Bai, Y.J.; Li, P.; Wang, C.; Gu, X.N.; Fan, Y.B. Novel Mg-Ca-La alloys for guided bone regeneration: Mechanical performance, stress corrosion behavior and biocompatibility. Mater. Today. Commun. 2022, 32, 103949. [Google Scholar] [CrossRef]
- Hu, Y.P.; Guo, X.; Qiao, Y.; Wang, X.Y.; Lin, Q.C. Preparation of medical Mg–Zn alloys and the effect of different zinc con-tents on the alloy. J. Mater. Sci. Mater. M 2022, 33, 9. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Gawad, S.A.; Shoeib, M.A. Corrosion studies and microstructure of Mg-Zn-Ca alloys for biomedical applications. Surf. Interfaces 2019, 14, 108–116. [Google Scholar] [CrossRef]
- Pan, H.; Pang, K.; Cui, F.Z.; Ge, F.; Man, C.; Wang, X.; Cui, Z.Y. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks’ solution. Corros. Sci. 2019, 157, 420–437. [Google Scholar] [CrossRef]
- Wen, Y.F.; Liu, Q.S.; Wang, J.F.; Yang, Q.M.; Zhao, W.K.; Qiao, B.; Li, Y.L.; Jiang, D.M. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg-1Zn-1Sn alloys by microalloying with Sr. Bioact. Mater. 2021, 6, 4654–4669. [Google Scholar] [CrossRef]
- Song, J.; Gao, Y.H.; Liu, C.M.; Chen, Z.Y. The effect of Sr addition on the microstructure and corrosion behaviour of a Mg-Zn-Ca alloy. Surf. Coat. Technol. 2022, 437, 128328. [Google Scholar] [CrossRef]
- Cho, D.H.; Avey, H.; Nam, K.H.; Dean, D.; Luo, A.A. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications. Acta Biomater. 2022, 150, 442–455. [Google Scholar] [CrossRef]
- Li, D.; Zhang, D.C.; Yuan, Q.; Liu, L.H.; Li, H.; Xiong, L.; Guo, X.N.; Yan, Y.; Yu, K.; Dai, Y.L.; et al. In vitro and in vivo assessment of the effect of biodegradable magnesium alloys on osteogenesis. Acta Biomater. 2022, 141, 454–465. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Huang, Y.D.; Feyerabend, F.; Blawert, C.; Gan, W.M.; Maawad, E.; You, S.H.; Gavras, S.; Scharnagl, N.; Bode, J.; et al. Influence of the amount of intermetallics on the degradation of Mg-Nd alloys under physiological conditions. Acta Biomater. 2021, 121, 695–712. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, J.F.; Xu, C.; Wang, L.G.; Zhu, S.J.; Guan, S.K. Anodic Role of Mg12Nd in the Micro-Galvanic Corrosion of Binary Mg-Nd Alloys. SSRN 2022. Available online: https://ssrn.com/abstract=4172876 (accessed on 24 November 2022).
- Wang, C.M.; Zeng, L.M.; Zhang, W.L.; Tang, F.Q.; Ding, W.C.; Xiao, S.F.; Liang, T.X. Enhanced mechanical properties and corrosion resistance of rolled Mg-1.5Sn-0.5Ca alloy by Ce microalloying. Mater. Charact. 2021, 179, 111325. [Google Scholar] [CrossRef]
- Wang, H.J.; Kumazawa, T.; Zhang, Y.; Wang, H.W.; Ju, D.Y. In vivo degradation behaviour and bone response of a new Mg-rare earth alloy immobilized in a rat femoral model. Mater. Today Commun. 2021, 26, 101727. [Google Scholar] [CrossRef]
- Kania, A.; Nowosielski, R.; Agnieszka, G.M.; Babilas, R. Mechanical and Corrosion Properties of Mg-Based Alloys with Gd Addition. Materials 2019, 12, 1775. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.L.; Qu, Y.; Kang, C.Y.; Kang, M.Y.; Dong, R.P.; Zhao, J.W. Development of new medical Mg-Zn-Ca-Y alloy and in-vitro and in-vivo evaluations of its biological characteristics. Mater. Today Commun. 2021, 26, 102002. [Google Scholar] [CrossRef]
- Li, H.; Wen, J.B.; He, J.G.; Shi, H.N.; Liu, Y. Effects of Dy addition on the mechanical and degradation properties of Mg-2Zn-0.5Zr alloy. Adv. Eng. Mater. 2020, 22, 1901360. [Google Scholar] [CrossRef]
- Azzeddine, H.; Hanna, A.; Dakhouche, A.; Rabahi, L.; Scharnagl, N.; Dopita, N.; Brisset, F.; Helbert, A.L.; Baudin, T. Impact of rare-earth elements on the corrosion performance of binary magnesium alloys. J. Alloys Compd. 2020, 829, 154569. [Google Scholar] [CrossRef]
- Dvorský, D.; Kubásek, J.; Voňavková, I.; Vojtěch, D. Structure, mechanical and corrosion properties of extruded Mg-Nd-Zn, Mg-Y-Zn and Mg-Y-Nd alloys. Mater. Sci. Technol. 2019, 35, 520–529. [Google Scholar] [CrossRef]
- Prasad, A.; Chiu, Y.L.; Jones, I.P.; Singh, S.S.; Gosvami, N.N.; Jain, J. Role of La addition for enhancing the corrosion resistance of Mg-Dy alloy. Corros. Eng. Sci. Technol. 2021, 56, 575–583. [Google Scholar] [CrossRef]
- Lotfpour, M.; Dehghanian, C.; Emamy, M.; Bahmani, A.; Malekan, M.; Saadati, A.; Taghizadeh, M.; Shokouhimehr, M. In-vitro corrosion behavior of the cast and extruded biodegradable Mg-Zn-Cu alloys in simulated body fluid (SBF). J. Magnes. Alloys 2021, 9, 2078–2096. [Google Scholar] [CrossRef]
- Qiao, M.L.; Sha, J.C.; Yin, S.Q.; Liu, W.H.; Zhao, Z.; Cui, J.Z.; Zhang, Z.Q. Effect of trace copper on the microstructure, corrosion behavior and biological properties of biodegradable Mg-2Zn-1Gd-0.5Zr alloy. J. Mater. Res. Technol. 2022, 18, 1607–1622. [Google Scholar] [CrossRef]
- Liu, Z.D.; Feyerabend, F.; Bohlen, J.; Regine, W.R.; Letzig, D. Mechanical properties and degradation behavior of binary magnesium-silver alloy sheets. J. Phys. Chem. Solids 2019, 133, 142–150. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Wang, D.X.; Li, H.X.; Yang, C.L.; Yuan, F.S.; Zhang, J.S. Microstructure, mechanical properties and corrosion behavior of quaternary Mg-1Zn-0.2Ca-xAg alloy wires applied as degradable anastomotic nails. Trans. Nonferrous Met. Soc. China 2021, 31, 111–124. [Google Scholar] [CrossRef]
- Li, Y.; Li, T.C.; Wang, Q.L.; Zou, Y. Effects of Li on Microstructures and Corrosion Behaviors of Mg-Li-Al Alloys. Magnes. Technol. 2019, 20, 127–134. [Google Scholar]
- Xia, D.D.; Liu, Y.; Wang, S.Y.; Zeng, R.C.; Liu, Y.S.; Zheng, Y.F.; Zhou, Y.S. In vitro and in vivo investigation on biodegradable Mg-Li-Ca alloys for bone implant application. Sci. China Mater. 2019, 62, 256–272. [Google Scholar] [CrossRef]
- Baek, S.M.; Kim, J.K.; Min, D.W.; Park, S.S. Remarkably slow corrosion rate of high-purity Mg microalloyed with 0.05wt% Sc. J. Magnes. Alloys 2022, in press. [Google Scholar] [CrossRef]
- He, Y.Q.; Wang, R.C.; Yang, L.Z.; Yang, L.Y.; Liu, H.C.; Peng, C.Q.; Feng, Y. Influence of Sc on the microstructure, degradation behavior, biocompatibility in vitro and mechanical property of Mg-2Zn-0.2Zr alloy. Mater. Design. 2022, 221, 110863. [Google Scholar] [CrossRef]
- Yang, L.Z.; Feng, Y.; He, Y.Q.; Yang, L.Y.; Liu, H.C.; Wang, X.F.; Peng, C.Q.; Wang, R.C. Effect of Sc/Sm microalloying on microstructural and properties of Mg-2Zn-0.3Ca biodegradable alloy. J. Alloys Compd. 2022, 907, 164533. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Li, J.Y.; Qi, M.F.; Gu, J.B.; Zhang, Y. Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg-Zn-Y-Gd-Zr alloy. J. Mater. Sci. 2020, 55, 1231–1245. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Wu, Z.Q. Effect of homogenization treatment on the corrosion behavior and mechanism of Mg-Y Al-loys. J. Wuhan Univ. Technol. 2020, 35, 635–652. [Google Scholar] [CrossRef]
- Lv, T.; Jiang, Y.W.; Chen, J.Q.; Deng, B.B.; Peng, F.; Lin, X.Z.; Liu, G.H.; Li, C.Q.; Zheng, X.F.; Xiao, J.; et al. Effect of homogenization on the microstructure, biocorrosion resistance, and biological performance of as-cast Mg-4Zn-1Ca alloy. Mater. Today Commun. 2022, 33, 104135. [Google Scholar] [CrossRef]
- Janbozorgi, M.; Taheri, K.K.; Taheri, A.K. Microstructural evolution, mechanical properties, and corrosion resistance of a heat-treated Mg alloy for the bio-medical application. J. Magnes. Alloys 2019, 7, 80–89. [Google Scholar] [CrossRef]
- Gui, Y.W.; Li, Q.A.; Chen, J. Effect of heat treatment on corrosion behaviors of Mg-5Y-2Nd-3Sm-0.5Zr alloys. Int. J. Electrochem. Sci. 2019, 14, 1342–1357. [Google Scholar] [CrossRef]
- Yan, X.D.; Wan, P.; Chen, L.Y.; Tan, L.L.; Xu, X.F.; Yang, K. Microstructural effects on mechanical properties and degradation behavior of Mg-Cu alloy. Materialia 2021, 16, 101089. [Google Scholar] [CrossRef]
- Iranshahi, F.; Nasiri, M.B.; Warchomicka, F.G.; Sommitsch, C. Investigation of the degradation rate of electron beam processed and friction stir processed biocompatible ZKX50 magnesium alloy. J. Magnes. Alloys 2022, 10, 707–720. [Google Scholar] [CrossRef]
- Cao, F.Y.; Zhang, J.; Li, K.K.; Song, G.L. Influence of heat treatment on corrosion behavior of hot rolled Mg5Gd alloys. Trans. Nonferrous Met. Soc. China 2021, 31, 939–951. [Google Scholar] [CrossRef]
- Jiang, D.Y.; Dai, Y.L.; Zhang, Y.; Yan, Y.; Ma, J.J.; Li, D.; Yu, K. Effects of heat treatment on microstructure, mechanical properties, corrosion resistance and cytotoxicity of ZM21 magnesium alloy as biomaterials. J. Mater. Eng. Perform. 2019, 28, 33–43. [Google Scholar] [CrossRef]
- Dong, J.H.; Tan, L.L.; Ren, Y.B.; Yang, K. Effect of microstructure on corrosion behavior of Mg-Sr alloy in Hank’s solution. Acta Metall. Sin. 2019, 32, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.Y.; Du, B.N.; Li, Y.M.; Wang, B.J.; Sheng, L.Y.; Shao, L.Q.; Zheng, Y.F.; Xi, T.F. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. J. Mater. Sci. Technol. 2019, 35, 6–18. [Google Scholar] [CrossRef]
- Chelliah, N.M.; Padaikathan, P.; Kumar, R. Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer’s solution. J. Magnes. Alloys 2019, 7, 134–143. [Google Scholar] [CrossRef]
- Del Rosario Silva Campos, M.; Blawert, C.; Mendis, C.L.; Mohedanoet, M.; Zimmermann, T.; Proefrock, D.; Zheludkevich, M.L.; Kainer, K.U. Effect of heat treatment on the corrosion behavior of Mg-10Gd alloy in 0.5% NaCl solution. Front. Mater. 2020, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, T.; Hou, M.M.; Xue, P.; Lv, H.; Huang, C.J. In vitro degradation behavior and biocompatibility of Mg-5.8Zn-2.0Yb-0.5Zr alloy during aging treatment. Mater. Lett. 2021, 282, 128682. [Google Scholar] [CrossRef]
- Pulido-González, N.; Hidalgo-Manrique, P.; García-Rodríguez, S.; Torres, J.; Rams, J. Effect of heat treatment on the mechanical and biocorrosion behaviour of two Mg-Zn-Ca alloys. J. Magnes. Alloys 2022, 10, 540–554. [Google Scholar] [CrossRef]
- Guo, H.; Chen, J.H.; Yan, H.G.; Xia, W.J.; Su, B.; Gong, X.L.; Yu, Z.L. Effects of the rolling strain rate-induced microstructure on biocorrosion behavior of the Mg-5Zn-1Mn alloy sheet. Mater. Res. Express 2019, 6, 8. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Zhang, Y.; Liu, Y.; Tian, Y.Q.; Zheng, X.P.; Chen, L.S. Microstructure characteristics and corrosion behaviors of Mg-2Zn-2Er-0.3Zr-0.3Mn alloy under various rolling reductions. Metals 2022, 12, 365. [Google Scholar] [CrossRef]
- Deng, B.; Dai, Y.L.; Lin, J.G.; Zhang, D.C. Effect of rolling treatment on microstructure, mechanical properties, and corrosion properties of WE43 alloy. Materials 2022, 15, 3985. [Google Scholar] [CrossRef]
- Wang, H.J.; Ju, D.Y.; Wang, H.W. Preparation and characterization of Mg-RE alloy sheets and formation of amorphous/crystalline composites by twin roll casting for biomedical implant application. Metals 2019, 9, 1075. [Google Scholar] [CrossRef] [Green Version]
- Dargusch, M.S.; Balasubramani, N.; Yang, N.; Johnston, S.; Ali, Y.; Wang, G.; Venezuela, J.; Carluccio, J.; Lauet, C.; Allavena, R.; et al. In vivo performance of a rare earth free Mg-Zn-Ca alloy manufactured using twin roll casting for potential applications in the cranial and maxillofacial fixation devices. Bioact. Mater. 2022, 12, 85–96. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Z.W.; Xu, C.X.; Ren, C.L.; Yang, W.F.; Zhang, J.S. Micro-galvanic corrosion behavior and mechanical properties of extruded Mg-2Y-1Zn-0.4Zr-0.3Sr alloys with different extrusion temperament immersed in simulated body fluids. Mater. Chem. Phys. 2021, 271, 124928. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Li, J.Y.; Qi, M.F.; Guo, W.H.; Deng, Y. A newly developed Mg-Zn-Gd-Mn-Sr alloy for degradable implant applications: Influence of extrusion temperature on microstructure, mechanical properties and in vitro corrosion behavior. Mater. Charact. 2022, 188, 111867. [Google Scholar] [CrossRef]
- Shunmugasamy, V.C.; Khalid, E.; Mansoor, B. Friction stir extrusion of ultra-thin wall biodegradable magnesium alloy tubes-Microstructure and corrosion response. Mater. Today 2021, 26, 102129. [Google Scholar] [CrossRef]
- Ly, X.; Yang, S.; Nguyen, T. Effect of equal channel angular pressing as the pretreatment on microstructure and corrosion behavior of micro-arc oxidation (MAO) composite coating on biodegradable Mg-Zn-Ca alloy. Surf. Coat. Technol. 2020, 395, 125923. [Google Scholar] [CrossRef]
- Horky, J.; Bryła, K.; Krystian, M.; Mozdzenet, G.; Mingler, B.; Sajti, L. Improving mechanical properties of lean Mg-Zn-Ca alloy for absorbable implants via Double Equal Channel Angular Pressing (D-ECAP). Mater. Sci. Eng. A 2021, 826, 142002. [Google Scholar] [CrossRef]
- Kavyani, M.; Ebrahimi, G.R.; Ezatpour, H.R.; Jahazi, M. Microstructure refinement, mechanical and biocorrosion properties of Mg-Zn-Ca-Mn alloy improved by a new severe plastic deformation process. J. Magnes. Alloys 2022, 10, 1640–1662. [Google Scholar] [CrossRef]
- Liu, G.N.; Xu, J.L.; Feng, B.J.; Liu, J.H.; Qi, D.Q.; Haung, W.Z.; Yang, P.X.; Zhang, S.J. Comparison of corrosion performance of extruded and forged WE43 Mg alloy. Materials 2022, 15, 1622. [Google Scholar] [CrossRef]
- Wu, S.X.; Wang, S.R.; Wang, G.Q.; Yu, X.C.; Liu, W.T.; Chang, Z.Q.; Wen, D.S. Microstructure, mechanical and corrosion properties of magnesium alloy bone plate treated by high-energy shot peening. Trans. Nonferrous Met. Soc. China 2019, 29, 1641–1652. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, S.R.; Liu, W.T.; Xiao, T.; Zhu, G.D.; Sun, Z.L. The effect of laser shock peening on the corrosion behavior of biocompatible magnesium alloy ZK60. Metals 2019, 9, 1237. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Tong, Z.P.; Zhou, W.F.; Yang, Y.; Jiao, J.F.; Ren, X.D. Improving electrochemical corrosion properties of AZ31 magnesium alloy via phosphate conversion with laser shock peening pretreatment. J. Alloys Compd. 2020, 846, 155837. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Prakash, C.; Ramakrishna, S. On investigating the soda-lime shot blasting of AZ31 alloy: Effects on surface roughness, material removal rate, corrosion resistance, and bioactivity. J. Magnes. Alloys 2021, 9, 1272–1284. [Google Scholar] [CrossRef]
- Hou, X.N.; Qin, H.F.; Gao, H.Y.; Mankoci, S.; Zhang, R.X.; Zhou, X.F.; Ren, Z.C.; Doll, G.L.; Martini, A.; Sahai, N.; et al. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nano-crystal surface modification. Mater. Sci. Eng. C 2017, 78, 1061–1071. [Google Scholar] [CrossRef]
- Marchenko, E.; Baigonakova, G.; Khrustalev, A.; Zhukov, I.; Vorozhtsov, A.; Chekalkin, T.; Monogenov, A.; Garin, A.; Kim, T.W.; Kang, S.B.; et al. Microstructure and biodegradation performance of Mg-4Ca-1Zn based alloys after ultrasonic treatment and doping with nanodiamonds for biomedical applications. Mater. Chem. Phys. 2023, 295, 126959. [Google Scholar] [CrossRef]
- Long, F.; Chen, G.Q.; Zhou, M.R.; Shi, Q.Y.; Liu, Q. Simultaneous enhancement of mechanical properties and corrosion resistance of as-cast Mg-5Zn via microstructural modification by friction stir processing. J. Magnes. Alloys 2021, in press. [CrossRef]
- Rokkala, U.; Bontha, S.; Ramesh, M.R.; Balla, V.K.; Srinivasan, A.; Kailas, S.V. Tailoring surface characteristics of bioabsorbable Mg-Zn-Dy alloy using friction stir processing for improved wettability and degradation behavior. J. Mater. Res. Technol. 2021, 12, 1530–1542. [Google Scholar] [CrossRef]
- Baghdadabad, D.M.; Baghdadabad, A.R.M.; Khoei, S.M.M. Characterization of bioactive ceramic coatings synthesized by plasma electrolyte oxidation on AZ31 magnesium alloy having different Na2SiO3·9H2O concentrations. Mater. Today Commun. 2020, 25, 101642. [Google Scholar] [CrossRef]
- Keyvani, A.; Zamani, M.; Bahamirian, M.; Nikoomanzari, E.; Fattah-alhosseini, A.; Sina, H. Role of incorporation of ZnO nanoparticles on corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation technique. Surf. Interfaces 2021, 22, 100728. [Google Scholar] [CrossRef]
- Kashin, A.D.; Sedelnikova, M.B.; Chebodaeva, V.V.; Uvarkinet, P.V.; Luginin, N.A.; Dvilis, E.S.; Kazmina, O.V.; Sharkeev, Y.P.; Khlusov, I.A.; Miller, A.A.; et al. Diatomite-based ceramic biocoating for magnesium implants. Ceram. Int. 2022, 48, 28059–28071. [Google Scholar] [CrossRef]
- Song, D.; Li, C.; Liang, N.N.; Yang, F.L.; Jiang, J.H.; Sun, J.P.; Wu, G.S.; Ma, A.B.; Ma, X.L. Simultaneously improving corrosion resistance and mechanical properties of a magnesium alloy via equal-channel angular pressing and post water annealing. Mater. Des. 2019, 166, 107621. [Google Scholar] [CrossRef]
- Li, J.; He, N.; Li, J.Y.; Fu, Q.Y.; Feng, M.C.; Jin, W.H.; Li, W.; Xiao, Y.; Yu, Z.T.; Chu, P.K.; et al. A silicate-loaded MgAl LDH self-healing coating on biomedical Mg alloys for corrosion retardation and cytocompatibility enhancement. Surf. Coat. Technol. 2022, 439, 128442. [Google Scholar] [CrossRef]
- Mashtalyar, D.V.; Nadaraia, K.V.; Plekhova, N.G.; Imshinetskiy, I.M.; Piatkova, M.A.; Pleshkova, A.I.; Kislova, S.E.; Sinebryukhov, S.L.; Gnedenkov, S.V. Antibacterial Ca/P-coatings formed on Mg alloy using plasma electrolytic oxidation and antibiotic impregnation. Mater. Lett. 2022, 317, 132099. [Google Scholar] [CrossRef]
- Zheng, Q.Y.; Li, J.; Yuan, W.; Liu, X.M.; Tan, L.; Zheng, Y.F.; Yeung, K.W.K.; Wu, S.L. Metal-Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustain. Chem. Eng. 2019, 7, 18114–18124. [Google Scholar] [CrossRef]
- AhadiParsa, M.; Mohammadloo, H.E.; Mirabedini, S.M.; Roshan, S. Bio-corrosion assessment and surface study of hydroxy-apatite-coated AZ31 Mg alloy pre-treated with vinyl tri-ethoxy silane. Mater. Chem. Phys. 2022, 287, 126147. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.J.; Han, L.P.; Ma, S.S.; Zhao, J.H.; Chen, H.M.; Yang, Z.K.; Zhang, F.M.; Xia, Y.; Zhou, Y.M.; et al. Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy. Mater. Sci. Eng. C 2019, 100, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Pozzo, L.D.Y.; Conceição, T.F.D.; Spinelli, A.; Scharnagl, N.; Pires, A.T.N. The influence of the crosslinking degree on the corrosion protection properties of chitosan coatings in simulated body fluid. Prog. Org. Coat. 2019, 137, 105328. [Google Scholar] [CrossRef]
- Cifuentes, S.C.; Lieblich, M.; Saldaña, L.; González-Carrasco, J.L.; Benavente, R. In vitro degradation of biodegradable polylactic acid/Mg composites: Influence of nature and crystalline degree of the polymeric matrix. Materialia 2019, 6, 100270. [Google Scholar] [CrossRef]
- Ali, W.; Mónica, E.R.; Kopp, A.; Gonzalez, C.; LLorca, J. Strength, corrosion resistance and cellular response of interfaces in bioresorbable poly-lactic acid/Mg fiber composites for orthopedic applications. J. Mech. Behav. Biomed. 2021, 124, 104781. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Cheng, L.; Lin, J.J.; Sun, D.W.; Zhang, J.; Liu, H.N. In vitro evaluation of degradation, cytocompatibility and antibacterial property of polycaprolactone/hydroxyapatite composite coating on bioresorbable magnesium alloy. J. Magnes. Alloys 2022, 10, 2252–2265. [Google Scholar]
- Rahman, M.; Chowdhury, M.A.; Mia, M.S.; Ali, M.R.; Rahman, A.; Ali, M.O.; Mahmud, S. Fabrication and characterization of hybrid coating on Mg-Zn-Ca Mg alloy for enhanced corrosion and degradation resistance as medical implant. Ceram. Int. 2022, 48, 23314–23324. [Google Scholar] [CrossRef]
- Li, H.Y.; Qin, Z.N.; Ouyang, Y.Q.; Zheng, B.; Wei, H.; Ou, J.; Shen, C. Hydroxyapatite/chitosan-metformin composite coating enhances the biocompatibility and osteogenic activity of AZ31 magnesium alloy. J. Alloys Compd. 2022, 909, 164694. [Google Scholar] [CrossRef]
- Jin, J.; Chen, X.H.; Zhou, S.W. Biocorrosion evaluation and bonding strength of HA-CS/PLA hybrid coating on microarc oxidised AZ91D magnesium alloy. Mater. Technol. 2022, 37, 503–510. [Google Scholar] [CrossRef]
- He, H.; Li, K.; Luo, W.; Jiao, Z.Y.; Ai, F.R.; Zhou, K.; Cao, C.L. Structure design, preparation and performance of a novel composite coating on medical magnesium-zinc alloy. Surf. Coat. Technol. 2022, 443, 128643. [Google Scholar] [CrossRef]
- Kalaiyarasan, M.; Pugalmani, S.; Rajendran, N. Fabrication of chitosan/silica hybrid coating on AZ31 Mg alloy for orthopaedic applications. J. Magnes. Alloys 2022, in press. [CrossRef]
- Gao, F.; Hu, Y.D.; Gong, Z.H.; Liu, T.; Gong, T.; Liu, S.; Zhang, C.; Quan, L.; Kaveendran, B.; Pan, C.J.; et al. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Mater. Sci. Eng. C 2019, 104, 109947. [Google Scholar] [CrossRef] [PubMed]
- Bahatibieke, A.; Qin, H.M.; Cui, T.; Liu, Y.; Wang, Z.X. In vivo and in simulated body fluid degradation behavior and bio-compatibility evaluation of anodic oxidation-silane-chitosan-coated Mg-4.0Zn-0.8Sr alloy for bone application. Mater. Sci. Eng. C 2021, 120, 111771. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.S.; Dian, J.W.; Qian, K.; Liu, H.; Zhou, X.X.; Yao, Q.Q.; Lu, M.M.; Chu, C.L.; Xue, F.; Bai, J.; et al. Dual self-healing inorganic-organic hybrid coating on biomedical Mg. Corros. Sci. 2022, 200, 110230. [Google Scholar] [CrossRef]
- Chen, J.X.; Tan, L.L.; Yu, X.M.; Yang, K. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys. J. Mater. Sci. Technol. 2019, 35, 503–511. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, Y.; Yan, H.; Zhou, G.H.; Wu, X.Q.; Hu, Z. Effects of the second phases on corrosion resistance of AZ91-xGd alloys treated with ultrasonic vibration. J. Alloys Compd. 2019, 783, 877–885. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Yang, Y.X.; Li, J.A.; Zeng, R.C.; Guan, S.K. Advances in coatings on magnesium alloys for cardiovascular stents–A review. Bioact. Mater. 2021, 6, 4729–4757. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Li, Y.; Zhao, J.; Qin, L.; Lai, Y.X. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: A review. Regen. Biomater. 2017, 4, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Bahmani, A.; Lotfpour, M.; Taghizadeh, M.; Kim, W.J. Corrosion behavior of severely plastically deformed Mg and Mg alloys. J. Magnes. Alloys 2022, 10, 2607–2648. [Google Scholar] [CrossRef]
- Kalayeh, P.M.; Malekan, M.; Bahmani, A.; Lotfpour, M.; Fatemi, S.M.; Zonoozi, S.B. Combination of severe plastic deformation and heat treatment for enhancing the corrosion resistance of a new Magnesium alloy. J. Alloys Compd. 2022, 927, 166939. [Google Scholar] [CrossRef]
- Cao, F.Y.; Shi, Z.M.; Song, G.L.; Liu, M.; Atrens, A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros. Sci. 2013, 76, 60–97. [Google Scholar] [CrossRef]
- Gong, X.L.; Chen, J.H.; Yan, H.G.; Xia, W.J.; Su, B. Effects of aging treatment and pre-deformation on stress corrosion cracking of magnesium alloy. J. Mater. Res. Technol. 2022, in press. [CrossRef]
- Miao, H.W.; Huang, H.; Shi, Y.J.; Zhang, H.; Pei, J.; Yuan, G.Y. Effects of solution treatment before extrusion on the microstructure, mechanical properties and corrosion of Mg-Zn-Gd alloy in vitro. Corros. Sci. 2017, 122, 90–99. [Google Scholar] [CrossRef]
Alloy | Condition | Second Phase(s) | Testing Environment | Corrosion Resistance | Reference |
---|---|---|---|---|---|
Mg−2.5Zn−0.7Y−0.7Gd−0.4Zr | HT | Mg3Zn3Y2 | Hanks’ solution | ↑ | [60] |
Mg−Y | HT | Mg24Y5 | 3.5 wt.% NaCl solution | ↑ | [61] |
Mg−4Zn−1Ca | HT | Ca2Mg6Zn3 | Hanks’ solution | ↑ | [62] |
Mg−2Zn−1Gd−1Ca | ST | Ca2Mg6Zn3, Mg3Gd2Zn3 | SBF solution | ↑ | [63] |
Mg−2Zn−1Gd−1Ca | A | Ca2Mg6Zn3, Mg3Gd2Zn3 | SBF solution | ↑ | [63] |
Mg−5Y−2Nd−3Sm−0.5Zr | ST | Mg24Y5 Mg41Nd5 Mg41Sm5 | 3.5% NaCl solution | ↑ | [64] |
Mg−5Y−2Nd−3Sm−0.5Zr | A | Mg24Y5 Mg41Nd5 Mg41Sm5 | 3.5% NaCl solution | ↑ | [64] |
Mg−2Cu/ Mg−5Cu | ST | Mg2Cu | Hanks’ balanced salt solution | ↑ | [65] |
ZKX50 | ST | Ca2Mg6Zn3 | 0.5 wt.% NaCl solution | ↑ | [66] |
Mg−3.0Gd−2.7Zn−0.4Zr−0.1Mn | ST | (Mg, Zn)3Gd | Hanks’ solution | ↑ | [67] |
Mg91.5Al3.5Gd5 | ST | Mg5Gd, Mg12ZnY, Al2Gd | 1 wt.% NaCl | ↑ | [67] |
Mg91.5Al3.5Gd5 | ST + A | Mg5Gd, Mg12ZnY, Al2Gd | 1 wt.% NaCl | ↑ | [67] |
Mg5Gd | A | — | 3.5 wt.% NaCl saturated with Mg(OH)2 | ↓ | [67] |
Mg5Gd | ST | — | 3.5 wt.% NaCl saturated with Mg(OH)2 | ↑ | [67] |
Mg5Gd | ST + A | — | 3.5 wt.% NaCl saturated with Mg(OH)2 | ↑ | [67] |
Mg−2Zn−1Mn | HT | MgxMny | Ringer’s solution | ↑ | [68] |
Mg−Sr | HT | Mg17Sr2 | Hanks’ solution | ↑, then↓ | [69] |
Mg−Y−Zn−Mn | ST | LPSO | 3.5 wt.% NaCl | ↑ | [70] |
AZ91 | ST | Mg17Al12 | Ringer’s solution | ↑ | [71] |
Mg−10Gd | ST | GdH2 Mg5Gd | 0.5% NaCl solution | ↑ | [72] |
Mg−Zn−Ca | ST | Mg2Ca, Ca2Mg6Zn3 | Hanks’ solution | ↑ | [74] |
Mg−Zn−Ca | Peak−A | Mg2Ca, Ca2Mg6Zn3 | Hanks’ solution | ↓ | [74] |
Mg−Zn−Ca | Over−A | Mg2Ca, Ca2Mg6Zn3 | Hanks’ solution | ↑ | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, W.; Liu, Y.; Zhang, M.; Tian, Y.; Chen, L. Research Progress on Corrosion Behaviors and Improvement Methods of Medical Degradable Mg−Based Alloys. Metals 2023, 13, 71. https://doi.org/10.3390/met13010071
Zhang Y, Liu W, Liu Y, Zhang M, Tian Y, Chen L. Research Progress on Corrosion Behaviors and Improvement Methods of Medical Degradable Mg−Based Alloys. Metals. 2023; 13(1):71. https://doi.org/10.3390/met13010071
Chicago/Turabian StyleZhang, Yuan, Wei Liu, Yun Liu, Mingshan Zhang, Yaqiang Tian, and Liansheng Chen. 2023. "Research Progress on Corrosion Behaviors and Improvement Methods of Medical Degradable Mg−Based Alloys" Metals 13, no. 1: 71. https://doi.org/10.3390/met13010071
APA StyleZhang, Y., Liu, W., Liu, Y., Zhang, M., Tian, Y., & Chen, L. (2023). Research Progress on Corrosion Behaviors and Improvement Methods of Medical Degradable Mg−Based Alloys. Metals, 13(1), 71. https://doi.org/10.3390/met13010071