Equivalent Modeling of Bolted Connections under Transverse Load Using Iwan-Based Material Properties
Abstract
:1. Introduction
2. Basic Theory
2.1. Adaption of Iwan Model
2.2. FEM Realization of the Iwan-Based Material
2.3. Algorithm Realization and Procedure
3. Method Validation
3.1. Comparison with the Traditional Iwan Model
3.2. Comparison with the Refined FE Model
4. Discussions
4.1. Physical Meanings of Modeling Parameters
4.2. Limitation of the Equivalent Modeling Method
5. Conclusions
- The proposed Iwan-based material can represent the mechanical properties of the adjusted Iwan model, which can well characterize the nonlinearity of bolted connections.
- The Iwan-based material is effective in the modeling of bolted connections. This modeling method using the Iwan-based material can be applied to the traditional finite element modeling code with convenience.
- This equivalent method is appropriate for modeling the performance of the bolted joints under the transverse cyclic load according to the force-displacement properties of the Iwan model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, D.; Shi, Q.F.; Fei, Q.G.; Wu, S.Q. Stiffness identification of fixed bolted-joint interface. Guti Huojian Jishu/J. Solid Rocket Technol. 2014, 37, 688–693. [Google Scholar]
- Jiang, D.; Wu, S.Q.; Shi, Q.F.; Fei, Q.G. Parameter identification of bolted-joint based on the model with thin-layer elements with isotropic constitutive relationship. Zhendong Yu Chongji/J. Vib. Shock 2014, 33, 35–40. [Google Scholar]
- Jiang, D.; Wu, S.Q.; Shi, Q.F.; Fei, Q.G. Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method. Gongcheng Lixue/Eng. Mech. 2015, 32, 220–227. [Google Scholar]
- Chen, J.; Wang, H.; Yu, Y.; Liu, Y.; Jiang, D. Loosening of Bolted Connections under Transverse Loading in Timber Structures. Forests 2020, 11, 816. [Google Scholar] [CrossRef]
- Tian, Y.; Qian, H.; Cao, Z.; Zhang, D.; Jiang, D. Identification of Pre-Tightening Torque Dependent Parameters for Empirical Modeling of Bolted Joints. Appl. Sci. 2021, 11, 9134. [Google Scholar] [CrossRef]
- Zhuang, Z.; Yu, Y.; Liu, Y.; Chen, J.; Wang, Z. Ultrasonic Signal Transmission Performance in Bolted Connections of Wood Structures under Different Preloads. Forests 2021, 12, 652. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, L.; Zhang, A.; Hang, X. Finite element explicit dynamics simulation of motion and shedding of jujube fruits under forced vibration. Comput. Electron. Agric. 2022, 198, 107009. [Google Scholar] [CrossRef]
- Li, W.; Zhu, D.; Shao, W.; Jiang, D. Modeling of Internal Geometric Variability and Statistical Property Prediction of Braided Composites. Materials 2022, 15, 5332. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Wan, Z.; Zhang, D.; Jiang, D. Rotor Fault Diagnosis Using Domain-Adversarial Neural Network with Time-Frequency Analysis. Machines 2022, 10, 610. [Google Scholar] [CrossRef]
- Segalman, D.J.; Starr, M.J. Inversion of Masing models via continuous Iwan systems. Int. J. Non-Linear Mech. 2008, 43, 74–80. [Google Scholar] [CrossRef]
- Argatov, I.I.; Butcher, E.A. On the Iwan models for lap-type bolted joints. Int. J. Non-Linear Mech. 2011, 46, 347–356. [Google Scholar] [CrossRef]
- Festjens, H.; Chevallier, G.; Dion, J.L. Nonlinear model order reduction of jointed structures for dynamic analysis. J. Sound Vib. 2014, 333, 2100–2113. [Google Scholar] [CrossRef]
- Dai, J.; Xu, Z.-D.; Gai, P.-P.; Hu, Z.-W. Optimal design of tuned mass damper inerter with a Maxwell element for mitigating the vortex-induced vibration in bridges. Mech. Syst. Signal Process. 2021, 148, 107180. [Google Scholar] [CrossRef]
- Süß, D.; Willner, K. Investigation of a jointed friction oscillator using the Multiharmonic Balance Method. Mech. Syst. Signal Process. 2015, 52–53, 73–87. [Google Scholar] [CrossRef]
- Iwan, W.D. A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response. J. Appl. Mech. 1966, 33, 893–900. [Google Scholar] [CrossRef]
- Song, Y.; Hartwigsen, C.J.; McFarland, D.M.; Vakakis, A.F.; Bergman, L.A. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 2004, 273, 249–276. [Google Scholar] [CrossRef]
- Mignolet, M.P.; Song, P.; Wang, X.Q. A stochastic Iwan-type model for joint behavior variability modeling. J. Sound Vib. 2015, 349, 289–298. [Google Scholar] [CrossRef]
- Shiryayev, O.V.; Page, S.M.; Pettit, C.L.; Slater, J.C. Parameter estimation and investigation of a bolted joint model. J. Sound Vib. 2007, 307, 680–697. [Google Scholar] [CrossRef]
- Rajaei, M.; Ahmadian, H. Development of generalized Iwan model to simulate frictional contacts with variable normal loads. Appl. Math. Model. 2014, 38, 4006–4018. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Fan, X.; Wan, Q. Reduced-order modeling approach for frictional stick-slip behaviors of joint interface. Mech. Syst. Signal Process. 2018, 103, 131–138. [Google Scholar] [CrossRef]
- Yuan, P.P.; Ren, W.X.; Zhang, J. Dynamic tests and model updating of nonlinear beam structures with bolted joints. Mech. Syst. Signal Process. 2019, 126, 193–210. [Google Scholar] [CrossRef]
- Li, D.; Xu, C.; Kang, J.; Zhang, Z. Modeling tangential friction based on contact pressure distribution for predicting dynamic responses of bolted joint structures. Nonlinear Dyn. 2020, 101, 255–269. [Google Scholar] [CrossRef]
- Brake, M.R.W. A reduced Iwan model that includes pinning for bolted joint mechanics. Nonlinear Dyn. 2016, 87, 1335–1349. [Google Scholar] [CrossRef]
- Miller, J.D.; Dane Quinn, D. A two-sided interface model for dissipation in structural systems with frictional joints. J. Sound Vib. 2009, 321, 201–219. [Google Scholar] [CrossRef]
- Ahmadian, H.; Rajaei, M. Identification of Iwan distribution density function in frictional contacts. J. Sound Vib. 2014, 333, 3382–3393. [Google Scholar] [CrossRef]
- Lacayo, R.M.; Allen, M.S. Updating structural models containing nonlinear Iwan joints using quasi-static modal analysis. Mech. Syst. Signal Process. 2019, 118, 133–157. [Google Scholar] [CrossRef]
- Li, C.; Jiang, Y.; Qiao, R.; Miao, X. Modeling and parameters identification of the connection interface of bolted joints based on an improved micro-slip model. Mech. Syst. Signal Process. 2021, 153, 107514. [Google Scholar] [CrossRef]
- Li, C.; Miao, X.; Qiao, R.; Tang, Q. Modeling method of bolted joints with micro-slip features and its application in flanged cylindrical shell. Thin-Walled Struct. 2021, 164, 107854. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, M.; Cao, H.; Xie, X.; Li, B.; Guo, M.; Li, H.; Xu, Z.; Tian, J.; Ma, D. Contact Pressure Distribution and Pressure Correction Methods of Bolted Joints under Mixed-Mode Loading. Coatings 2022, 12, 1516. [Google Scholar] [CrossRef]
- Wang, S.A.; Zhu, M.; Xie, X.; Li, B.; Liang, T.X.; Shao, Z.Q.; Liu, Y.L. Finite Element Analysis of Elastoplastic Elements in the Iwan Model of Bolted Joints. Materials 2022, 15, 5817. [Google Scholar] [CrossRef]
- Ahmadian, H.; Jalali, H. Identification of bolted lap joints parameters in assembled structures. Mech. Syst. Signal Process. 2007, 21, 1041–1050. [Google Scholar] [CrossRef]
- Ahmadian, H.; Jalali, H.; Pourahmadian, F. Nonlinear model identification of a frictional contact support. Mech. Syst. Signal Process. 2010, 24, 2844–2854. [Google Scholar] [CrossRef]
- Quinn, D.D. Modal analysis of jointed structures. J. Sound Vib. 2012, 331, 81–93. [Google Scholar] [CrossRef]
- Jamia, N.; Jalali, H.; Taghipour, J.; Friswell, M.I.; Haddad Khodaparast, H. An equivalent model of a nonlinear bolted flange joint. Mech. Syst. Signal Process. 2021, 153, 107507. [Google Scholar] [CrossRef]
- Ranjan, P.; Pandey, A.K. Modeling of pinning phenomenon in Iwan model for bolted joint. Tribol Int 2021, 161, 107071. [Google Scholar] [CrossRef]
- Ranjan, P.; Pandey, A.K. Iwan Model for Bolted Joint with Residual Macroslip Stiffness and Pinning. In Lecture Notes in Mechanical Engineering; Springer: Singapore, 2022; pp. 311–318. [Google Scholar]
- Ge, T.; Xu, Z.-D.; Guo, Y.-Q.; Huang, X.-H.; He, Z.-F. Experimental Investigation and Multiscale Modeling of VE Damper Considering Chain Network and Ambient Temperature Influence. J. Eng. Mech. 2022, 148, 04021124. [Google Scholar] [CrossRef]
- Lacayo, R.M.; Deaner, B.J.; Allen, M.S. A numerical study on the limitations of modal Iwan models for impulsive excitations. J. Sound Vib. 2017, 390, 118–140. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.J.; Kurt, M.; Eriten, M.; Dodson, J.C.; Foley, J.R.; Wolfson, J.C.; McFarland, D.M.; Bergman, L.A.; Vakakis, A.F. Nonlinear Parameter Identification of a Mechanical Interface Based on Primary Wave Scattering. Exp. Mech. 2017, 57, 1495–1508. [Google Scholar] [CrossRef]
- Gross, J.; Armand, J.; Lacayo, R.M.; Reuss, P.; Salles, L.; Schwingshackl, C.W.; Brake, M.R.W.; Kuether, R.J. A Numerical Round Robin for the Prediction of the Dynamics of Jointed Structures. In Dynamics of Coupled Structures; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Volume 4, pp. 195–211. [Google Scholar]
- Li, Y.; Hao, Z. A six-parameter Iwan model and its application. Mech. Syst. Signal Process. 2016, 68–69, 354–365. [Google Scholar] [CrossRef]
- Li, Y.; Hao, Z.; Feng, J.; Zhang, D. Investigation into discretization methods of the six-parameter Iwan model. Mech. Syst. Signal Process. 2017, 85, 98–110. [Google Scholar] [CrossRef]
- Oldfield, M.; Ouyang, H.; Mottershead, J.E. Simplified models of bolted joints under harmonic loading. Comput. Struct. 2005, 84, 25–33. [Google Scholar] [CrossRef]
- Firrone, C.M.; Battiato, G.; Epureanu, B.I. Modeling the Microslip in the Flange Joint and Its Effect on the Dynamics of a Multistage Bladed Disk Assembly. J. Comput. Nonlinear Dyn. 2018, 13, 011011. [Google Scholar] [CrossRef]
- Chu, Y.; Wen, H.; Chen, T. Nonlinear Modeling and Identification of an Aluminum Honeycomb Panel with Multiple Bolts. Shock Vib. 2016, 2016, 1276753. [Google Scholar] [CrossRef]
- Abdollahzadeh, G.R.; Yapang-Gharavi, S.; Hoseinali-Beygi, M. Combination of mechanical and informational modeling to predict hysteresis behavior of I beam-to-CFT column connection. Struct. Des. Tall Spec. Build. 2018, 27, e1420. [Google Scholar] [CrossRef]
- Zou, Y.; Yun, G.; Zhuang, Z. Development of combined hardening model for the metal material under cyclic loading. In CMESM 2006: Proceedings of the 1st International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics; Jilin University: Changchun, China, 2006; pp. 515–519. [Google Scholar]
- Izumi, S.; Yokoyama, T.; Iwasaki, A.; Sakai, S. Three-dimensional finite element analysis of tightening and loosening mechanism of threaded fastener. Eng. Fail. Anal. 2005, 12, 604–615. [Google Scholar] [CrossRef]
- Abad, J.; Medel, F.J.; Franco, J.M. Determination of Valanis model parameters in a bolted lap joint: Experimental and numerical analyses of frictional dissipation. Int. J. Mech. Sci. 2014, 89, 289–298. [Google Scholar] [CrossRef]
α | A (m2) | l (mm) | E1 (MPa) | |
---|---|---|---|---|
0.167 | 475 × 10−6 | 54 | 0.0813 | 11,256.37 |
Transverse Displacement | α | A (m2) | Fq (N) | l (m) | E (MPa) |
---|---|---|---|---|---|
0.3 mm (experiment) | 0 | 475 × 10−6 | 1780 | 0.0813 | 2683.64 |
0.3 mm (simulation) | 0 | 475 × 10−6 | 1549 | 0.0813 | 3953.40 |
0.06 mm (simulation) | 0.303 | 475 × 10−6 | 623.45 | 0.0813 | 5569.041 |
Level of Relative Preload | α | A (m2) | Fq (N) | l (m) | E (MPa) |
---|---|---|---|---|---|
β = 57% | 0.091 | 475 × 10−6 | 7400 | 0.0813 | 20,982 |
β = 77% | 0.126 | 475 × 10−6 | 9200 | 0.0813 | 21,650 |
β = 90% | 0.218 | 475 × 10−6 | 11,400 | 0.0813 | 23,407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, D.; Wang, M.; Sun, Y.; Hang, X. Equivalent Modeling of Bolted Connections under Transverse Load Using Iwan-Based Material Properties. Metals 2023, 13, 91. https://doi.org/10.3390/met13010091
Jiang D, Wang M, Sun Y, Hang X. Equivalent Modeling of Bolted Connections under Transverse Load Using Iwan-Based Material Properties. Metals. 2023; 13(1):91. https://doi.org/10.3390/met13010091
Chicago/Turabian StyleJiang, Dong, Minrui Wang, Yuhang Sun, and Xiaochen Hang. 2023. "Equivalent Modeling of Bolted Connections under Transverse Load Using Iwan-Based Material Properties" Metals 13, no. 1: 91. https://doi.org/10.3390/met13010091
APA StyleJiang, D., Wang, M., Sun, Y., & Hang, X. (2023). Equivalent Modeling of Bolted Connections under Transverse Load Using Iwan-Based Material Properties. Metals, 13(1), 91. https://doi.org/10.3390/met13010091