Effect of Hf Dopant on Resistance to CO Toxicity on ZrCo(110) Surface for H Adsorption
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
3.1. Energetics and Structures of H and CO Adsorption on Pure and Doped ZrCo(110) Surface
3.1.1. On the Pure ZrCo(110) Surface
3.1.2. On the Doped ZrCo(110) Surface
3.2. Co-Adsorption on the Pure and Doped Surfaces
3.3. Electronic Structures
4. Conclusions
- It can be understood that the CO occupies the adsorption site of H and therefore prevents the adsorption and diffusion into the interior of the lattice.
- Fortunately and interestingly, the presence of Hf reduces the number of adsorption sites of CO and inhibits the formation of carbides to a certain extent.
- Moreover, the PDOS result shows that Hf doping inhibits the CO toxicity on the interaction between H and the surface atom, which is indicated by the great overlap between the s orbital of H and the s orbital of Co on the doped surface.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Deng, Y.; Liu, W.; Zhao, X.; Xu, J.; Yuan, Z. Research progress of hydrogen energy and metal hydrogen storage materials. Sustain. Energy Technol. Assess. 2023, 55, 102974. [Google Scholar] [CrossRef]
- Nagar, R.; Srivastava, S.; Hudson, S.L.; Amaya, S.L.; Tanna, A.; Sharma, M.; Achayalingam, R.; Sonkaria, S.; Khare, V.; Srinivasan, S.S. Recent developments in state-of-the-art hydrogen energy technologies–review of hydrogen storage materials. Sol. Compass 2023, 5, 100033. [Google Scholar] [CrossRef]
- Mingxing, W.; Yijin, L.; Xiaofei, X.; Zhao, Z.; Tong, L. (TiVZrNb)83Cr17 high-entropy alloy as catalyst for hydrogen storage in MgH2. Chem. Eng. J. 2023, 476, 146525. [Google Scholar]
- Mac Dowell, N.; Sunny, N.; Brandon, N.; Herzog, H.; Ku, A.Y.; Maas, W.; Ramirez, A.; Reiner, D.M.; Sant, G.N.; Shah, N. The hydrogen economy: A pragmatic path forward. Joule 2021, 5, 2524–2529. [Google Scholar] [CrossRef]
- Leonardo, G.; Antonio, A.; Alessandro, C.; Nicola, P. Materials for Hydrogen Storage and Transport: Implications for Risk-Based Inspection. Key Eng. Mater. 2023, 6954, 221–230. [Google Scholar]
- Nibedita, N.; Subhendu, C.; Sumit, S.; Abhishek, S.; Singh, Y.A.; Tabish, A. A graphene-based material for green sustainable energy technology for hydrogen storage. Environ. Sci. Pollut. Res. Int. 2023. [Google Scholar] [CrossRef]
- Evans, H.A.; Yildirim, T.; Peng, P.; Cheng, Y.; Deng, Z.; Zhang, Q.; Mullangi, D.; Zhao, D.; Canepa, P.; Breunig, H.M.; et al. Hydrogen Storage with Aluminum Formate, ALF: Experimental, Computational, and Technoeconomic Studies. J. Am. Chem. Soc. 2023, 145, 22150–22157. [Google Scholar] [CrossRef]
- Sahar, Z.-A.; Hasanzadeh, E.M.; Marjerrison, C.A.; John, G.; Mahdi, B. Enhanced electrochemical hydrogen storage performance of lanthanum zirconium oxide ceramic microstructures synthesized by a simple approach. Ceram. Int. 2023, 49 Pt 23, 37415–37422. [Google Scholar]
- Ruyue, L.; Hang, L.; Xiangyu, P.; Jiajin, Z.; Wenfeng, W.; Yuan, L.; Ning, X.; Qiuming, P.; Shumin, H.; Lu, Z. Improvement on cyclic stability of AB4-type La–Mg–Ni-based hydrogen storage alloys via merging Y element for nickel-metal hydride batteries. Int. J. Hydrogen Energ. 2023, 48, 32849–32859. [Google Scholar]
- Zhang, T.B.; Yang, X.W.; Li, J.S.; Hu, R.; Xue, X.Y.; Fu, H.Z. On the poisoning effect of O2 and N2 for the Zr0.9Ti0.1V2 hydrogen storage alloy. J. Power Sources 2011, 202, 217–224. [Google Scholar] [CrossRef]
- Beom Park, K.; Fadonougbo, J.O.; Park, C.S.; Lee, J.H.; Na, T.W.; Kang, H.S.; Ko, W.S.; Park, H.K. Effect of Fe substitution on first hydrogenation kinetics of TiFe-based hydrogen storage alloys after air exposure. Int. J. Hydrogen Energy 2021, 46, 30780–30789. [Google Scholar] [CrossRef]
- Fonseca, S.; Maia, G.; Pinto, L. Hydrogen adsorption in the presence of coadsorbed CO on Pd (111). Electrochem. Commun. 2018, 93, 100–103. [Google Scholar] [CrossRef]
- Hefnawy, M.A.; Fadlallah, S.A.; El-Sherif, R.M.; Medany, S.S. Systematic DFT studies of CO-Tolerance and CO oxidation on Cu-doped Ni surfaces. J. Mol. Graph. Model. 2023, 118, 108343. [Google Scholar] [CrossRef] [PubMed]
- Curulla-Ferre, D.; Govender, A.; Bromfield, T.C.; Niemantsverdriet, J. A DFT study of the adsorption and dissociation of CO on sulfur-precovered Fe (100). J. Phys. Chem. B 2006, 110, 13897–13904. [Google Scholar] [CrossRef] [PubMed]
- Svenum, I.-H.; Herron, J.A.; Mavrikakis, M.; Venvik, H.J. Pd3Ag (111) as a model system for hydrogen separation membranes: Combined effects of CO adsorption and surface termination on the activation of molecular hydrogen. Top. Catal. 2020, 63, 750–761. [Google Scholar] [CrossRef]
- Easa, J.; Yan, C.; Schneider, W.F.; O’Brien, C.P. CO and C3H6 poisoning of hydrogen permeation across Pd77Ag23 alloy membranes: A comparative study with pure palladium. Chem. Eng. J. 2022, 430, 133080. [Google Scholar] [CrossRef]
- Song, C.; Ge, Q.; Wang, L. DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule. J. Phys. Chem. B 2005, 109, 22341–22350. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Illas, F. CO adsorption on monometallic Pd, Rh, Cu and bimetallic PdCu and RhCu monolayers supported on Ru (0001). Surf. Sci. 2005, 598, 144–155. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462. [Google Scholar] [CrossRef]
- Eichler, A. Chemical characterization of a zirconia-supported Pt cluster. Phys. Rev. B 2005, 71, 125418. [Google Scholar] [CrossRef]
- Yangkun, W.; Ken, M.; Satoshi, K.; Toshiaki, N.; Fumitaka, M. Hydrogen Storage Mechanism by Gas-Phase Vanadium Cluster Cations Revealed by Thermal Desorption Spectrometry. J. Phys. Chem. A 2023, 127, 8821–8827. [Google Scholar]
- Ruoqi, Z.; Delu, G.; Yixuan, L.; Dunyou, W. First principle study of enhanced CO adsorption on divacancy graphene-supported TM7 (TM=Fe, Co, Ni, Cu, Ag, and Au) clusters. Chem. Phys. 2024, 576, 112089. [Google Scholar]
- Li, B.; Wang, X.F.; Wang, W.Y.; Liu, C.F.; He, L.C.; Luo, M.F.; Chen, J. Identifying the surface active sites of FeOx-modified Pt/Nb2O5 catalysts in CO and propane oxidation. Appl. Catal. A-Gen. 2023, 649, 118960. [Google Scholar] [CrossRef]
- Liu, L.; McAllister, B.; Ye, H.; Hu, P. Identifying an O2 supply pathway in CO oxidation on Au/TiO2 (110): A density functional theory study on the intrinsic role of water. J. Am. Chem. Soc. 2006, 128, 4017–4022. [Google Scholar] [CrossRef] [PubMed]
- Molina, L.; Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO (100). Phys. Rev. B 2004, 69, 155424. [Google Scholar] [CrossRef]
- Sandrock, G.; Goodell, P. Surface poisoning of LaNi5, FeTi and (Fe, Mn) Ti by O2, CO and H2O. J. Less Common Met. 1980, 73, 161–168. [Google Scholar] [CrossRef]
- Tanaka, H.; Kuriyama, N.; Ichikawa, S.; Senoh, H.; Naka, N.; Aihara, K.; Itoh, H.; Tsukahara, M. Degrading mechanism on hydrogen absorbing-desorbing cycle durability of V-and Ti-Cr-based BCC-type solid solutions. Mater. Sci. Forum 2005, 475–479, 2481–2484. [Google Scholar] [CrossRef]
- Han, S.; Zhang, X.; Shi, S.; Tanaka, H.; Kuriyama, N.; Taoka, N.; Aihara, K.; Xu, Q. Experimental and theoretical investigation of the cycle durability against CO and degradation mechanism of the LaNi5 hydrogen storage alloy. J. Alloys Compd. 2007, 446, 208–211. [Google Scholar] [CrossRef]
- Thiébaut, S.; Douilly, M.; Contreras, S.; Limacher, B.; Paul-Boncour, V.; Décamps, B.; Percheron-Guégan, A. 3He retention in LaNi5 and Pd tritides: Dependence on stoichiometry, 3He distribution and aging effects. J. Alloys Compd. 2007, 446, 660–669. [Google Scholar] [CrossRef]
- Devillers, M.; Sirch, M.; Bredendiek-Kämper, S.; Penzhorn, R. Characterization of the zirconium-cobalt (ZrCo)-hydrogen system in view of its use for tritium storage. Chem. Mater. 1990, 2, 255–262. [Google Scholar] [CrossRef]
- Longhurst, G. Pyrophoricity of tritium-storage bed materials. Fusion Technol. 1988, 14, 750–755. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, X.; Yu, Y.; Song, J.; Wu, L. Influence of the Fe-doping on hydrogen behavior on the ZrCo surface. Int. J. Hydrogen Energy 2021, 46, 33877–33888. [Google Scholar] [CrossRef]
- Penzhorn, R.-D.; Sirch, M. Evaluation of ZrCo and other getters for tritium handling and storage. J. Nucl. Mater. 1990, 170, 217–231. [Google Scholar] [CrossRef]
- Xianggang, K.; You, Y.; Yanhong, S.; Jiangfeng, S. Effect of Hf doping on He behavior in tritium storage material ZrCo. Phys. Chem. Chem. Phys. 2021, 23, 18686–18693. [Google Scholar]
- Qingqing, W.; Xianggang, K.; You, Y.; Huilei, H.; Ge, S.; Guanghui, Z.; Yougen, Y.; Tao, G. Effect of multiple Ti doping on helium behavior in ZrCo. J. Nucl. Mater. 2021, 551, 152955. [Google Scholar]
- Glasbrenner, H.; Klewe-Nebenius, H.; Bruns, M.; Pfennig, G.; Penzhorn, R.D.; Joachim Ache, H. Surface analytical investigation of the tritium getter ZrCo after exposure to various gases. Microchim. Acta 1992, 107, 207–217. [Google Scholar] [CrossRef]
- Hualing, L.; Shumao, W.; Lijun, J.; Zhang, L.; Xiaopeng, L.; Zhinian, L. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys. Rare Metals 2008, 27, 367–370. [Google Scholar]
- Wang, Q.; Kong, X.; Han, H.; Sang, G.; Zhang, G.; Gao, T. Effect of doping Hf on the hydrogen dissociation and diffusion mechanism on the ZrCo(110) surface. Appl. Surf. Sci. 2019, 483, 383–390. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, X.; Han, H.; Sang, G.; Zhang, G.; Yi, Y.; Gao, T. Influence of Ti on the dissolution and migration of He in ZrCo based on first principles investigation. Phys. Chem. Chem. Phys. 2019, 21, 14692–14700. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; Sang, G.; Yi, Y.-G.; Gao, T. Effect of doping Ti on the vacancy trapping mechanism for the helium in ZrCo from first principles. Phys. Chem. Chem. Phys. 2019, 21, 20909–20918. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Lang, W.; Wu, F.; Wang, G. Surface properties and poisoning of ZrCr2−xFex. Min. Metall. Eng. 1994, 14, 61–63. [Google Scholar]
- Wang, L.; Ding, J.; Huang, X.; Song, K.; Liu, B.; Zeng, X. Influence of Ti/Hf doping on hydrogen storage performance and mechanical properties of ZrCo compounds: A first principle study. Int. J. Hydrogen Energy 2018, 43, 13328–13338. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Harris, I.R.; Hussain, D.; Barraclough, K.G. The constitution of the binary equiatomic alloys of Zr with Fe, Co and Ni. Scr. Metall. 1970, 4, 305–307. [Google Scholar] [CrossRef]
- Ivanov, O.; Adamova, A.; Tararaeva, E.; Tregubov, I. Structure of Zirconium Alloys; Struktura Splavov Tsirkoniya; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1973.
- Nan, H.; Meng, H.; Evangelista, F.A. CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. J. Phys. Chem. A 2023, 127, 1975–1987. [Google Scholar]
- Wang, Q.; Kong, X.; Han, H.; Sang, G.; Zhang, G.; Gao, T. The performance of adsorption, dissociation and diffusion mechanism of hydrogen on the Ti-doped ZrCo(110) surface. Phys. Chem. Chem. Phys. 2019, 21, 12597–12605. [Google Scholar] [CrossRef]
- Penzhorn, R.-D.; Devillers, M.; Sirch, M. Storage of tritium in ZrCo alloy: Effect of pre-exposure to impurities relevant to the fusion fuel cycle. J. Nucl. Mater. 1991, 179, 863–866. [Google Scholar] [CrossRef]
- Devillers, M.; Sirch, M.; Penzhorn, R.-D. Hydrogen isotopes in pure and nitrided ZrCo. Z. Phys. Chem. 1989, 164, 1355–1360. [Google Scholar] [CrossRef]
Site | Adsorption Energy (eV) | ||
---|---|---|---|
H | CO (b1) | CO (b2) | |
TopZr | −3.703 | −0.165 | −1.772 |
TopCo | −3.703 | −0.001 | −1.935 |
BridgeCoCo | −3.869 | −0.005 | −1.773 |
BridgeZrZr | −3.750 | −0.015 | −1.558 |
BridgeZrCo | - | - | −1.886 |
HollowCoZrZr | −4.083 | - | −1.923 |
HollowZrCoCo | - | −2.154 |
Site | Adsorption Energy (eV) | ||
---|---|---|---|
H | CO (b1) | CO (b2) | |
TopHf | −2.971 | −0.125 | −1.190 |
BridgeCoCo | −3.750 | - | −1.954 |
BridgeZrHf | −3.661 | - | - |
HollowZrCoHf | −3.961 | - | - |
HollowCoZrZr | −3.872 | - | - |
TopCo | - | −0.022 | −1.958 |
TopZr | −3.640 | −0.187 | −1.111 |
Site | Adsorption Energy (eV) |
---|---|
HollowZrCoCo + HollowCoZrZr | −3.922 |
TopCo(b2) + BridgeCoCo | −3.846 |
TopCo(b2) + HollowCoZrZr | −4.101 |
Site | Adsorption Energy (eV) |
---|---|
BridgeCoCo(b2) + BridgeCoCo | −3.991 |
BridgeCoCo(b2) + HollowZrCoHf | −3.709 |
BridgeCoCo(b2) + HollowCoZrZr | −4.084 |
TopCo + BridgeCoCo | −3.678 |
TopCo + HollowZrCoHf | −4.035 |
TopCo + HollowCoZrZr | −4.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, X.; Pan, R.; Kharchenko, D.O.; Wu, L. Effect of Hf Dopant on Resistance to CO Toxicity on ZrCo(110) Surface for H Adsorption. Metals 2023, 13, 1973. https://doi.org/10.3390/met13121973
Kong X, Pan R, Kharchenko DO, Wu L. Effect of Hf Dopant on Resistance to CO Toxicity on ZrCo(110) Surface for H Adsorption. Metals. 2023; 13(12):1973. https://doi.org/10.3390/met13121973
Chicago/Turabian StyleKong, Xianggang, Rongjian Pan, Dmitrii O. Kharchenko, and Lu Wu. 2023. "Effect of Hf Dopant on Resistance to CO Toxicity on ZrCo(110) Surface for H Adsorption" Metals 13, no. 12: 1973. https://doi.org/10.3390/met13121973
APA StyleKong, X., Pan, R., Kharchenko, D. O., & Wu, L. (2023). Effect of Hf Dopant on Resistance to CO Toxicity on ZrCo(110) Surface for H Adsorption. Metals, 13(12), 1973. https://doi.org/10.3390/met13121973