Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs
Abstract
:1. Introduction
2. Study Objectives
- Previously published data from more than 100 experiments were gathered.
- The collected data were classified and listed according to the specimen characteristics and effective parameters.
- The previous proposed formulas and theories that could predict the shear strength of steel beams were presented and compared.
- The MATLAB software R2014a, Switzerland, was utilized to perform a regression process using the program learner toolbox and four major optimized regression methods (decision tree (DT), support vector machines (SVM), Gaussian process regression (GPR), and ensemble trees (EN)).
- The four ORLTs were checked through a comparison of their mean square error (MSE) and root-mean-square error (RMSE) obtained through the analysis.
- In addition, the previous findings were also compared with those calculated using an artificial neural network (ANN) model.
- The new proposed equation was validated using the results experimentally gained from the testing of two steel beams with different web geometries, steel grades, and test setups in addition to the findings of previously tested specimens published in two previous studies.
Previously Published Data
3. Theoretical Background
3.1. Eurocode 3
3.2. Proposed Formula
3.2.1. Unbuckled Stage
3.2.2. Collapsed Stage
4. Cascade forward Backpropagation
5. Appropriate Conditions for Using the Proposed Equation
6. Experimental Program
6.1. Specimen Details
6.2. Specimen Materials Properties
6.3. Test Procedure and Results
7. Verification of Proposed Formula
8. Conclusions
- An acceptable level of accuracy can be achieved in predicting the final shear force using the proposed equation.
- When compact flanges and a slender web are paired, accurate results can be achieved if the flange width to web depth ratio is less than or equal to 0.33.
- For compact flanges and non-compact webs, the optimum quantitative relationship between the two thicknesses is less than or equal to 6.5, which allows for the prediction of the nearest achievable shear strength.
- In the case of non-compact flanges and a slender web, it is advisable to have one of the following two conditions; (a) the ratio of the transversal stiffener spacing to web depth (b/d) should be less than or equal to 1 when the load span to stiffener spacing (L/b) is more than or equal to 2; or (b) the ratio of b/d should be less than or equal to 2.5 when L/b is equal to 1.
- In the majority of classification cases, the ratio of transverse stiffener spacing to web height is the main variable that has a substantial impact on the accuracy of the modified factor results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Classification of Web and Flange
Sep No. | tf/tw | bf/2tf | hw/tw | fyw/fyf | bf/hw | b/d | L/b | Web | Flange | |
C4 | [19] | 4.35 | 3.20 | 242.18 | 0.90 | 0.12 | 0.71 | 2.00 | Slender | Compact |
G6-T1 | [20] | 4.04 | 7.78 | 259.18 | 0.97 | 0.24 | 1.50 | 1.00 | Slender | Compact |
G6-T2 | 4.04 | 7.78 | 259.18 | 0.97 | 0.24 | 0.75 | 2.00 | Slender | Compact | |
G6-T3 | 4.04 | 7.78 | 259.18 | 0.97 | 0.24 | 0.50 | 3.00 | Slender | Compact | |
G7-T1 | 3.92 | 7.95 | 255.02 | 0.98 | 0.24 | 1.00 | 1.50 | Slender | Compact | |
G7-T2 | 3.92 | 7.95 | 255.02 | 0.98 | 0.24 | 1.00 | 1.50 | Slender | Compact | |
G8-T1 | 3.76 | 7.98 | 250.00 | 0.93 | 0.24 | 3.00 | 1.00 | Slender | Compact | |
G8-T2 | 3.76 | 7.98 | 250.00 | 0.93 | 0.24 | 1.50 | 1.00 | Slender | Compact | |
G8-T3 | 3.76 | 7.98 | 250.00 | 0.93 | 0.24 | 1.50 | 2.00 | Slender | Compact | |
G9-T1 | 5.74 | 7.98 | 381.38 | 1.07 | 0.24 | 3.00 | 1.00 | Slender | Compact | |
G9-T2 | 5.74 | 7.98 | 381.38 | 1.07 | 0.24 | 1.50 | 1.00 | Slender | Compact | |
G9-T3 | 5.74 | 7.98 | 381.38 | 1.07 | 0.24 | 1.50 | 2.00 | Slender | Compact | |
E1T2 | [21] | 2.48 | 9.25 | 127.25 | 1.06 | 0.36 | 1.50 | 1.00 | Slender | Non-Compact |
E2T1 | 5.17 | 4.48 | 128.15 | 1.01 | 0.36 | 1.00 | 3.00 | Slender | Compact | |
C-AC2 | [22] | 3.03 | 5.43 | 147.48 | 0.28 | 0.22 | 5.45 | 1.00 | Non-Compact | Compact |
C-AC4 | 3.98 | 3.90 | 111.51 | 0.30 | 0.28 | 5.50 | 1.00 | Compact | Compact | |
C-AC5 | 4.44 | 3.32 | 106.33 | 0.30 | 0.28 | 5.50 | 1.00 | Compact | Compact | |
B | [23] | 2.67 | 10.00 | 266.67 | 1.00 | 0.20 | 1.00 | 1.00 | Slender | Non-Compact |
3-2 | [24] | 3.28 | 4.76 | 99.69 | 1.29 | 0.31 | 1.82 | 1.00 | Non-Compact | Compact |
3-3 | 3.28 | 4.81 | 149.06 | 1.17 | 0.21 | 1.21 | 1.00 | Slender | Compact | |
2·2 | [25] | 3.00 | 14.58 | 300.00 | 1.00 | 0.29 | 2.40 | 1.00 | Slender | Non-Compact |
TG3 | [26] | 6.56 | 6.10 | 400.00 | 0.71 | 0.20 | 1.00 | 1.00 | Slender | Compact |
TG3-1 | 6.56 | 6.10 | 400.00 | 0.71 | 0.20 | 1.00 | 1.00 | Slender | Compact | |
TG4 | 8.08 | 4.95 | 400.00 | 0.71 | 0.20 | 1.00 | 1.00 | Slender | Compact | |
TG4-1 | 8.04 | 4.98 | 400.00 | 0.71 | 0.20 | 1.00 | 1.00 | Slender | Compact | |
TG5 | 11.88 | 3.37 | 400.00 | 0.71 | 0.20 | 1.00 | 1.00 | Slender | Compact | |
TG5-1 | 11.88 | 3.37 | 400.00 | 0.71 | 0.20 | 1.00 | 1.00 | Slender | Compact | |
U32/5 | [27] | 3.79 | 4.04 | 113.25 | 0.55 | 0.27 | 2.19 | 1.55 | Compact | Compact |
U33/5 | 4.44 | 4.00 | 132.96 | 0.61 | 0.27 | 2.19 | 2.06 | Non-Compact | Compact | |
TG14 | [28] | 3.22 | 12.18 | 314.43 | 0.72 | 0.25 | 1.00 | 2.00 | Slender | Non-Compact |
TG15 | 5.15 | 7.60 | 314.43 | 0.77 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
TG16 | 6.65 | 5.89 | 314.43 | 0.65 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
TG17 | 9.61 | 4.08 | 314.43 | 0.71 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
TG18 | 13.40 | 2.92 | 314.43 | 0.72 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
TG19 | 15.98 | 2.45 | 314.43 | 0.82 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
TG22 | 3.20 | 5.85 | 150.25 | 0.68 | 0.25 | 1.00 | 2.00 | Non-Compact | Compact | |
TG23 | 4.53 | 4.13 | 150.25 | 0.74 | 0.25 | 1.00 | 2.00 | Non-Compact | Compact | |
TG24 | 6.40 | 2.92 | 150.25 | 0.75 | 0.25 | 1.00 | 2.00 | Non-Compact | Compact | |
TG25 | 7.64 | 2.45 | 150.25 | 0.85 | 0.25 | 1.00 | 2.00 | Non-Compact | Compact | |
3TG1 | 3.95 | 8.04 | 139.50 | 0.93 | 0.46 | 1.97 | 1.00 | Non-Compact | Compact | |
3TG2 | 4.00 | 9.92 | 158.13 | 0.99 | 0.50 | 1.98 | 1.00 | Non-Compact | Compact | |
3TG4 | 5.12 | 7.97 | 200.80 | 0.89 | 0.41 | 1.98 | 1.00 | Slender | Compact | |
RTG1 | 3.54 | 8.44 | 240.16 | 0.89 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
RTG2 | 3.70 | 8.09 | 240.16 | 0.89 | 0.25 | 1.00 | 2.00 | Slender | Compact | |
RTG4 | 4.95 | 8.09 | 267.37 | 0.94 | 0.30 | 1.00 | 2.00 | Slender | Compact | |
T31/3 | [29] | 2.96 | 8.71 | 200.25 | 0.62 | 0.26 | 0.86 | 4.06 | Slender | Non-Compact |
T31/4 | 2.96 | 8.83 | 200.25 | 0.62 | 0.26 | 0.86 | 2.00 | Slender | Non-Compact | |
M3O | [30] | 5.02 | 5.05 | 302.49 | 0.97 | 0.17 | 1.56 | 1.00 | Slender | Compact |
3D1 | [31] | 6.00 | 10.42 | 297.00 | 1.30 | 0.42 | 1.00 | 4.49 | Slender | Compact |
3D3 | 6.00 | 10.42 | 297.00 | 1.30 | 0.42 | 1.00 | 1.80 | Slender | Compact | |
TGV1-1 | [32] | 4.83 | 10.00 | 289.86 | 0.85 | 0.33 | 2.00 | 1.00 | Slender | Compact |
TGV1-2 | 4.83 | 10.00 | 289.86 | 0.85 | 0.33 | 1.00 | 2.00 | Slender | Compact | |
TGV2-2 | 4.81 | 10.00 | 288.46 | 0.85 | 0.33 | 1.00 | 2.00 | Slender | Compact | |
TGV3-2 | 4.98 | 10.00 | 298.51 | 0.85 | 0.33 | 1.00 | 2.00 | Slender | Compact | |
TGV4 | 5.13 | 9.95 | 303.55 | 0.88 | 0.34 | 1.00 | 2.00 | Slender | Compact | |
TGV5 | 5.05 | 10.05 | 302.02 | 0.92 | 0.34 | 0.99 | 2.00 | Slender | Compact | |
TGV6 | 5.13 | 9.95 | 303.55 | 0.90 | 0.34 | 0.99 | 2.00 | Slender | Compact | |
TGV7-2 | 5.10 | 9.95 | 302.53 | 0.88 | 0.34 | 0.99 | 2.00 | Slender | Compact | |
TGV10-1 | 5.24 | 10.00 | 313.61 | 0.77 | 0.33 | 0.99 | 2.00 | Slender | Compact | |
TGV10-2 | 5.24 | 10.00 | 313.61 | 0.77 | 0.33 | 0.99 | 2.00 | Slender | Compact | |
TGV11-2 | 5.24 | 10.00 | 313.61 | 1.04 | 0.33 | 1.00 | 2.00 | Slender | Compact | |
33/1 | [33] | 3.11 | 5.47 | 291.26 | 0.57 | 0.12 | 1.00 | 1.00 | Slender | Compact |
34/1 | 2.99 | 6.25 | 328.04 | 0.57 | 0.11 | 0.98 | 1.00 | Slender | Compact | |
35/1 | 2.94 | 6.09 | 366.06 | 0.57 | 0.10 | 1.00 | 1.00 | Slender | Compact | |
32/1·5 | 3.05 | 6.25 | 237.14 | 0.57 | 0.16 | 1.51 | 1.00 | Slender | Compact | |
33/1·5 | 3.11 | 6.09 | 292.23 | 0.57 | 0.13 | 1.50 | 1.00 | Slender | Compact | |
34/1·5 | 3.00 | 5.91 | 320.00 | 0.57 | 0.11 | 1.48 | 1.00 | Slender | Compact | |
L31-PA | [34] | 4.76 | 5.00 | 289.52 | 0.68 | 0.16 | 1.55 | 1.00 | Slender | Compact |
L33-PA | 4.11 | 4.95 | 247.15 | 0.71 | 0.16 | 1.56 | 1.00 | Slender | Compact | |
MC31-PB3 | [35] | 3.43 | 9.93 | 227.27 | 0.75 | 0.30 | 0.73 | 2.00 | Slender | Compact |
PA1 | [36] | 12.00 | 10.38 | 800.00 | 1.05 | 0.31 | 0.75 | 5.00 | Slender | Compact |
PA2 | 12.00 | 10.38 | 800.00 | 1.05 | 0.31 | 0.75 | 4.00 | Slender | Compact | |
PA3 | 12.00 | 10.38 | 800.00 | 1.05 | 0.31 | 0.75 | 3.00 | Slender | Compact | |
PB1 | 12.00 | 10.38 | 800.00 | 1.05 | 0.31 | 0.63 | 6.00 | Slender | Compact | |
PB2 | 12.00 | 10.38 | 800.00 | 1.05 | 0.31 | 0.63 | 5.00 | Slender | Compact | |
PC1 | 10.00 | 12.50 | 800.00 | 0.82 | 0.31 | 1.25 | 2.75 | Slender | Non-Compact | |
PC2 | 10.00 | 12.50 | 800.00 | 0.82 | 0.31 | 1.25 | 1.75 | Slender | Non-Compact | |
PD1 | 10.00 | 12.50 | 800.00 | 0.82 | 0.31 | 0.94 | 3.67 | Slender | Non-Compact | |
PD2 | 10.00 | 12.50 | 800.00 | 0.82 | 0.31 | 0.94 | 2.67 | Slender | Non-Compact | |
PD3 | 10.00 | 12.50 | 800.00 | 0.82 | 0.31 | 0.94 | 1.67 | Slender | Non-Compact | |
PC3 | 10.00 | 12.50 | 800.00 | 0.82 | 0.31 | 0.94 | 1.00 | Slender | Non-Compact | |
PB3 | [37] | 3.43 | 9.93 | 227.27 | 0.75 | 0.30 | 0.73 | 2.00 | Slender | Compact |
PB4 | 3.43 | 9.93 | 227.27 | 0.75 | 0.30 | 0.73 | 2.00 | Slender | Compact | |
B1 | [38] | 3.46 | 11.41 | 209.79 | 1.43 | 0.38 | 15.00 | 1.00 | Slender | Non-Compact |
B4 | 3.05 | 12.38 | 300.00 | 0.92 | 0.25 | 15.00 | 1.00 | Slender | Non-Compact | |
K1 | 3.46 | 11.41 | 209.79 | 1.43 | 0.38 | 10.00 | 1.00 | Slender | Non-Compact | |
1A | [39] | 3.38 | 11.25 | 202.70 | 0.97 | 0.38 | 13.50 | 1.00 | Slender | Non-Compact |
1B | 3.37 | 11.25 | 202.02 | 0.97 | 0.38 | 13.50 | 1.00 | Slender | Non-Compact | |
2A | 3.33 | 11.25 | 200.00 | 0.97 | 0.38 | 13.50 | 1.00 | Slender | Non-Compact | |
2B | 3.40 | 11.25 | 204.08 | 0.97 | 0.38 | 13.50 | 1.00 | Slender | Non-Compact | |
3A | 3.00 | 12.50 | 300.00 | 1.02 | 0.25 | 13.50 | 1.00 | Slender | Non-Compact | |
3B | 3.00 | 12.50 | 300.00 | 1.02 | 0.25 | 13.50 | 1.00 | Slender | Non-Compact | |
4A | 2.99 | 12.50 | 298.51 | 1.02 | 0.25 | 13.50 | 1.00 | Slender | Non-Compact | |
4B | 2.96 | 12.50 | 295.57 | 1.02 | 0.25 | 13.50 | 1.00 | Slender | Non-Compact | |
CP1/1 | [40] | 3.92 | 6.25 | 245.10 | 0.96 | 0.20 | 1.49 | 1.00 | Slender | Compact |
RCP1/1 | [41] | 4.03 | 6.17 | 357.21 | 0.94 | 0.14 | 0.99 | 1.00 | Slender | Compact |
Appendix B
References
- Davies, A.W.; Griffith, D.S. Shear Strength of steel plate girder. Proc. Inst. Civ. Eng.-Struct. Build. 1999, 134, 147–157. [Google Scholar] [CrossRef]
- Sulyok, M.; Galambos, T.V. Evaluation of web buckling test results on welded beams and plate girders subjected to shear. Eng. Struct. 1996, 18, 459–464. [Google Scholar] [CrossRef]
- Lee, S.C.; Davidson, J.S.; Yoo, C.H. Shear buckling coefficients of plate girder web panels. Comput. Struct. 1996, 59, 789–795. [Google Scholar] [CrossRef]
- Lee, S.C.; Yoo, C.H. Strength of Plate Girder Web Panels under Pure Shear. J. Struct. Eng. 1998, 124, 184–194. [Google Scholar] [CrossRef]
- Shahabian, F.; Roberts, T.M. Combined Shear-and-Patch Loading of Plate Girders. J. Struct. Eng. 2000, 126, 316–321. [Google Scholar] [CrossRef]
- Bradford, M.A. Improved Shear Strength of Webs Designed in Accordance with the LRFD Specification. Eng. J. 1996, 33, 95–100. [Google Scholar]
- Höglund, T. Shear buckling resistance of steel and aluminium plate girders. Thin-Walled Struct. 1997, 29, 13–30. [Google Scholar] [CrossRef]
- ENV 1993-1-3 Eurocode 3: Design of steel structures: Part 1.1. In General Rules and Rules for Buildings; BSI: Afghanistan, Middle East, 1992.
- Nethercot, D.A.; Byfield, M.P. Calibration of Design Procedures for Steel Plate Girders. Adv. Struct. Eng. 1997, 1, 111–126. [Google Scholar] [CrossRef]
- Barakat, S.; Mansouri, A.A.; Altoubat, S. Shear strength of steel beams with trapezoidal corrugated webs using regression analysis. Steel Compos. Struct. 2015, 18, 757–773. [Google Scholar] [CrossRef]
- Elamary, A.S.; Taha, I.B.M. Determining the Shear Capacity of Steel Beams with Corrugated Webs by Using Optimised Regression Learner Techniques. Materials 2021, 14, 2364. [Google Scholar] [CrossRef]
- Ben Seghier, M.E.A.; Ouaer, H.; Ghriga, M.A.; Menad, N.A.; Thai, D.-K. Hybrid soft computational approaches for modeling the maximum ultimate bond strength between the corroded steel reinforcement and surrounding concrete. Neural Comput. Appl. 2021, 33, 6905–6920. [Google Scholar] [CrossRef]
- Seghier, M.E.; Plevris, V.; Solorzano, G. Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes. Structures 2022, 44, 261–273. [Google Scholar] [CrossRef]
- Khalaj, G.; Azimzadegan, T.; Khoeini, M.; Etaat, M. Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels. Neural Comput. Appl. 2013, 23, 2301–2308. [Google Scholar] [CrossRef]
- Khalaj, G.; Pouraliakbar, H.; Mamaghani, K.R.; Khalaj, M.J. Modeling the correlation between heat treatment, chemical composition and bainite fraction of pipeline steels by means of artificial neural networks. Neural Netw. World 2013, 23, 351. [Google Scholar] [CrossRef] [Green Version]
- ELamary, A.S. Cardiff theory: Web panel aspect ratio limits and their relation with inclination angle of membrane tensile yield strength. Int. J. Steel Struct. 2016, 16, 799–806. [Google Scholar] [CrossRef]
- ELamary, A.S. Ultimate shear strength of composite welded steel-aluminium beam subjected to shear load. Int. J. Steel Struct. 2016, 16, 41–50. [Google Scholar] [CrossRef]
- Lee, S.C.; Lee, D.S.; Yoo, C.H. Ultimate shear strength of long web panels. J. Constr. Steel Res. 2008, 64, 1357–1365. [Google Scholar] [CrossRef]
- Longbottom, E.; Heymay, J. Experimental verification of the strength of plate girders designed in accordance with the revised British Standard 153: Tests on full scale model plate girders. Proc. Inst. Civ. Eng. 1956, 5, 462–486. [Google Scholar] [CrossRef]
- Basler, K.; Yen, B.-T.; Mueller, J.A.; Thürlimann, B. Web buckling tests on welded plate girders, Part 3: Tests on plate girders subjected to shear. Welded Plate Girder Proj. Comm. 1960, 165, 48. [Google Scholar]
- Cooper, P.B.; Lew, H.S.; Yen, B.T. Welded constructional alloy steel plate girders. J. Struct. Div. 1964, 90, 1–36. [Google Scholar] [CrossRef]
- Carskaddan, P.S. Shear buckling of unstiffened hybrid beams. J. Struct. Div. 1968, 94, 1965–1990. [Google Scholar] [CrossRef]
- Konishi, I. Theory and Experiment of Load Carrying Capacity of Plate Girders; Research Committee: Kansai District, Japan, 1965. [Google Scholar]
- Sakai, F.; Fujii, T.; Fukucei, Y. Failure Tests of Plate Girders Using Large-Sided Models; University of Tokyo: Tokyo, Japan, 1966. [Google Scholar]
- Bergfelt, A.; Hövik, J. Thin-walled deep plate girders under static loads. In Proceedings of the IABSE Colloquium; New York. 1968. Available online: https://www.e-periodica.ch/cntmng?pid=bse-cr-001:1968:8::132 (accessed on 5 November 2022).
- Skaloud, M. Ultimate load and failure mechanism of thin webs in shear. In Design of Plate and Box Girders for Ultimate Strength Colloquium; IABSE: London, UK, 1971. [Google Scholar]
- Kamtekar, A.G.; Dwiget, J.B.; Terelfall, B.D. Tests on Hybrid Plate Girders (Report 2). Cambridge University, Report No. CUED/C-Struct/TR28 Cambridge, 1972.
- Rockey, K.C.; Skaloud, M. The ultimate load behavior of plate girders loaded in shear. Struct. Eng. 1972, 1, 29–48. [Google Scholar]
- Kamtekar, A.G.; Dwiget, J.B.; Terelfall, B.D. Tests on Hybrid Plate Girders (Report 3). Cambridge, 1974.
- Evans, H.R.; Rockey, K.C.; Porter, D.M. Tests on longitudinally reinforced plate girders subjected to shear. In Proceedings of the Conference of Structural Stability; Preliminary Report; Structural Stability Research Council (SSRC): Liege, Belgium, 1977; pp. 295–304. [Google Scholar]
- Evans, E.R.; Rockey, K.C.; Tang, K.H. An investigation into the Rigidity of Longitudinal Web Stiffeners for Plate Girders; University of wales, College of Cardiff, 1979. [Google Scholar]
- Rockey, K.C.; Valtinat, G.; Tang, K.H. The design of transverse stiffeners on webs loaded in shear—An ultimate load approach. Proc. Inst. Civ. Eng. 1981, 71, 1069–1099. [Google Scholar] [CrossRef]
- Adorisio, D. Model Studies on Plate Girders Subject to Shear Loading; University of Wales: Cardiff, UK, 1982. [Google Scholar]
- Evans, H.R.; Tang, K.H. An Investigation of the Ultimate Load Behavior of Longitudinally Stiffened Plate Girder Webs Loaded Predominantly in Shear. 1983.
- Evans, H.R. A Report on the Full Scale Tests on a Girder with a Stiffened Web Subjected to Combined Shear and Bending Loads; University of Wales College of Cardiff: Cardiff, UK, 1984. [Google Scholar]
- Tang, K.H.; Evans, H.R. Transverse stiffeners for plate girder webs—An experimental study. J. Constr. Steel Res. 1984, 4, 253–280. [Google Scholar] [CrossRef]
- Evans, H.R. An appraisal, by full scale testing, of new design procedures for steel girders subjected to shear and bending. Proc. Inst. Civ. Eng. 1986, 81, 175–189. [Google Scholar] [CrossRef]
- Leiva, L. Shear Buckling of Trapezoidally Corrugated Girder Webs; Report 583:3, Part 2; Chalmers University of Technology, Division of Steel and Timber Structures: Goteborg, Sweden, 1983. [Google Scholar]
- Frey, F.; Anslijn, R. Shear tests on unstiffened plate girders. In Proceedings of the Second International Colloquium on the Stability of Steel Structures, ECC3, 13–15 April 1977, Liege, Belgium; pp. 321–326.
- Narayanan, R.; Rockey, K.C. Ultimate load capacity of plate girders with webs containing circular cut-outs. Proc. Inst. Civ. Eng. 1981, 71, 845–862. [Google Scholar] [CrossRef]
- Der Avanessian, N.G.V. Ultimate Strength of Plate Girders Containing openings in Webs; University of Wales: Cardiff, UK, 1983. [Google Scholar]
- Porter, D.M.; Rockey, K.C.; Evan, E.R. The collapse behaviour of plate girders loaded in shear. Struct. Eng. 1975, 53, 313–325. [Google Scholar]
- Evans, H.R. Longitudinally and transversely reinforced plate girders." Plated Structures. In Stability and Strength; Narayanan, R., Ed.; Elsevier, Applied Science: London, UK, 1983; pp. 1–37. [Google Scholar]
- BS 5950; Part 1. Structural Use of Steel work in Building. Code of Practice for Design–Rolled and Welded Sections. British Standards Institution: London, UK, 2000; Volume 1, ISBN 9781859421796.
- Manzoor, B.; Othman, I.; Durdyev, S.; Ismail, S.; Wahab, M. Influence of Artificial Intelligence in Civil Engineering toward Sustainable Development—A Systematic Literature Review. Appl. Syst. Innov. 2021, 4, 52. [Google Scholar] [CrossRef]
- Gomes Correia, A.; Cortez, P.; Tinoco, J.; Marques, R. Artificial Intelligence Applications in Transportation Geotechnics. Geotech. Geol. Eng. 2013, 31, 861–879. [Google Scholar] [CrossRef]
- Luckey, D.; Fritz, H.; Legatiuk, D.; Dragos, K.; Smarsly, K. Artificial intelligence techniques for smart city applications. In International Conference on Computing in Civil and Building Engineering; Springer: New York, NY, USA; Sao Paulo, Brazil, 2020; pp. 3–15. [Google Scholar]
- Tavana Amlashi, A.; Alidoust, P.; Pazhouhi, M.; Pourrostami Niavol, K.; Khabiri, S.; Ghanizadeh, A.R. AI-Based Formulation for Mechanical and Workability Properties of Eco-Friendly Concrete Made by Waste Foundry Sand. J. Mater. Civ. Eng. 2021, 33, 04021038. [Google Scholar] [CrossRef]
- Zavadskas, E.; Antucheviciene, J.; Vilutiene, T.; Adeli, H. Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability 2017, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Luciano, A.; Cutaia, L.; Cioffi, F.; Sinibaldi, C. Demolition and construction recycling unified management: The DECORUM platform for improvement of resource efficiency in the construction sector. Environ. Sci. Pollut. Res. 2021, 28, 24558–24569. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, Z.M.; Ali, Z.H.; Salih, S.Q.; Al-Ansari, N. Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial Intelligence Model. Sustainability 2020, 12, 1514. [Google Scholar] [CrossRef] [Green Version]
- Shohda, A.M.A.; Ali, M.A.M.; Ren, G.; Kim, J.-G.; Mohamed, M.A.-E.-H. Application of Cascade Forward Backpropagation Neural Networks for Selecting Mining Methods. Sustainability 2022, 14, 635. [Google Scholar] [CrossRef]
- Basaran, U.B.; Kurban, M. A New Approach for the Short-Term Load Forecasting with Autoregressive and Artificial Neural Network Models. Int. J. Comput. Intell. Res. 2007, 3, 66–71. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Soofastaei, A. The Application of Artificial Intelligence to Reduce Greenhouse Gas Emissions in the Mining Industry. In Green Technologies to Improve the Environment on Earth; IntechOpen: London, UK, 2019. [Google Scholar]
- Mahmoud Ali, M.; Omran, A.N.M.; Abd-El-Hakeem Mohamed, M. Prediction the correlations between hardness and tensile properties of aluminium-silicon alloys produced by various modifiers and grain refineries using regression analysis and an artificial neural network model. Eng. Sci. Technol. Int. J. 2021, 24, 105–111. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Tran, V.-L.; Thai, D.-K.; Nguyen, D.-D. Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Struct. 2020, 151, 106720. [Google Scholar] [CrossRef]
- Roberts, T.M.; Shahabian, F. Design procedures for combined shear and patch loading of plate girders. Proc. Inst. Civ. Eng.-Struct. Build. 2000, 140, 219–225. [Google Scholar] [CrossRef]
Girder/Test Reference | b mm | d mm | tw mm | bf mm | tf mm | E kN/mm2 | σyw N/mm2 | σyf N/mm2 | la mm | |
---|---|---|---|---|---|---|---|---|---|---|
C4 | [19] | 254.0 | 356.0 | 1.47 | 41.0 | 6.4 | 210.0 | 258.0 | 287.0 | 508.0 |
G6-T1 | [20] | 1905.0 | 1270.0 | 4.90 | 308.0 | 19.8 | 210.0 | 253.0 | 261.0 | 1905.0 |
G6-T2 | 953.0 | 1270.0 | 4.90 | 308.0 | 19.8 | 210.0 | 253.0 | 261.0 | 1905.0 | |
G6-T3 | 635.0 | 1270.0 | 4.90 | 308.0 | 19.8 | 210.0 | 253.0 | 261.0 | 1905.0 | |
G7-T1 | 1270.0 | 1270.0 | 4.98 | 310.0 | 19.5 | 210.0 | 253.0 | 259.0 | 1905.0 | |
G7-T2 | 1270.0 | 1270.0 | 4.98 | 310.0 | 19.5 | 210.0 | 253.0 | 259.0 | 1905.0 | |
G8-T1 | 3810.0 | 1270.0 | 5.08 | 305.0 | 19.1 | 210.0 | 263.0 | 284.0 | 3810.0 | |
G8-T2 | 1905.0 | 1270.0 | 5.08 | 305.0 | 19.1 | 210.0 | 263.0 | 284.0 | 1905.0 | |
G8-T3 | 1905.0 | 1270.0 | 5.08 | 305.0 | 19.1 | 210.0 | 263.0 | 284.0 | 3810.0 | |
G9-T1 | 3810.0 | 1270.0 | 3.33 | 305.0 | 19.1 | 210.0 | 307.0 | 288.0 | 3810.0 | |
G9-T2 | 1905.0 | 1270.0 | 3.33 | 305.0 | 19.1 | 210.0 | 307.0 | 288.0 | 1905.0 | |
G9-T3 | 1905.0 | 1270.0 | 3.33 | 305.0 | 19.1 | 210.0 | 307.0 | 288.0 | 3810.0 | |
E1T2 | [21] | 1905.0 | 1270.0 | 9.98 | 459.0 | 24.8 | 210.0 | 745.0 | 703.0 | 1905.0 |
E2T1 | 1270.0 | 1270.0 | 9.91 | 459.0 | 51.2 | 210.0 | 760.0 | 750.0 | 3810.0 | |
C-AC2 | [22] | 2490.0 | 457.0 | 3.10 | 102.0 | 9.7 | 210.0 | 215.0 | 755.0 | 2490.0 |
C-AC4 | 2515.0 | 457.0 | 4.30 | 127.0 | 16.3 | 210.0 | 236.0 | 783.0 | 2515.0 | |
C-AC5 | 2515.0 | 457.0 | 4.30 | 127.0 | 19·1 | 210.0 | 236.0 | 790.0 | 2515.0 | |
B | [23] | 1200.0 | 1200.0 | 4.50 | 240.0 | 12.0 | 210.0 | 490.0 | 491.0 | 1200.0 |
3-2 | [24] | 581.0 | 319.0 | 3.20 | 100.0 | 10.5 | 210.0 | 352.0 | 273.0 | 581.0 |
3-3 | 577.0 | 477.0 | 3.20 | 101.0 | 10.5 | 210.0 | 317.0 | 272.0 | 577.0 | |
2-2 | [25] | 1440.0 | 600.0 | 2.00 | 175.0 | 6.0 | 210.0 | 255.0 | 255.0 | 1440.0 |
TG3 | [26] | 1000.0 | 1000.0 | 2.50 | 200.0 | 16.4 | 210.0 | 200.0 | 281.0 | 1000.0 |
TG3-1 | 1000.0 | 1000.0 | 2.50 | 200.0 | 16.4 | 210.0 | 200.0 | 281.0 | 1000.0 | |
TG4 | 1000.0 | 1000.0 | 2.50 | 200.0 | 20.2 | 210.0 | 200.0 | 281.0 | 1000.0 | |
TG4-1 | 1000.0 | 1000.0 | 2.50 | 200.0 | 20.1 | 210.0 | 200.0 | 281.0 | 1000.0 | |
TG5 | 1000.0 | 1000.0 | 2.50 | 200.0 | 29.7 | 210.0 | 200.0 | 281.0 | 1000.0 | |
TG5-1 | 1000.0 | 1000.0 | 2.50 | 200.0 | 29.7 | 210.0 | 200.0 | 281.0 | 1000.0 | |
U32/5 | [27] | 788.0 | 359.0 | 3.17 | 97.0 | 12.0 | 210.0 | 230.0 | 422.0 | 1220.0 |
U33/5 | 788.0 | 359.0 | 2.70 | 96.0 | 12.0 | 210.0 | 257.0 | 422.0 | 1620.0 | |
TG14 | [28] | 305.0 | 305.0 | 0.97 | 76.0 | 3.12 | 210.0 | 219.0 | 305.0 | 610.0 |
TG15 | 305.0 | 305.0 | 0.97 | 76.0 | 5.0 | 210.0 | 219.0 | 286.0 | 610.0 | |
TG16 | 305.0 | 305.0 | 0.97 | 76.0 | 6.45 | 210.0 | 219.0 | 337.0 | 610.0 | |
TG17 | 305.0 | 305.0 | 0.97 | 76.0 | 9.32 | 210.0 | 219.0 | 308.0 | 610.0 | |
TG18 | 305.0 | 305.0 | 0.97 | 76.0 | 13.0 | 210.0 | 219.0 | 304.0 | 610.0 | |
TG19 | 305.0 | 305.0 | 0.97 | 76.0 | 15.5 | 210.0 | 219.0 | 268.0 | 610.0 | |
TG22 | 305.0 | 305.0 | 2.03 | 76.0 | 6.5 | 210.0 | 229.0 | 337.0 | 610.0 | |
TG23 | 305.0 | 305.0 | 2.03 | 76.0 | 9.2 | 210.0 | 229.0 | 308.0 | 610.0 | |
TG24 | 305.0 | 305.0 | 2.03 | 76.0 | 13.0 | 210.0 | 229.0 | 304.0 | 610.0 | |
TG25 | 305.0 | 305.0 | 2.03 | 76.0 | 15.5 | 210.0 | 229.0 | 268.0 | 610.0 | |
3TG1 | 551.0 | 279.0 | 2.00 | 127.0 | 7.9 | 210.0 | 255.0 | 275.0 | 551.0 | |
3TG2 | 502.0 | 253.0 | 1.60 | 127.0 | 6.4 | 210.0 | 272.0 | 275.0 | 502.0 | |
3TG4 | 498.0 | 251.0 | 1.25 | 102.0 | 6.4 | 210.0 | 246.0 | 275.0 | 498.0 | |
RTG1 | 305.0 | 305.0 | 1.27 | 76.0 | 4.5 | 210.0 | 244.0 | 275.0 | 610.0 | |
RTG2 | 305.0 | 305.0 | 1.27 | 76.0 | 4.7 | 210.0 | 244.0 | 275.0 | 610.0 | |
RTG4 | 254.0 | 254.0 | 0.95 | 76.0 | 4.7 | 210.0 | 259.0 | 275.0 | 508.0 | |
T31/3 | [29] | 700.0 | 813.0 | 4.06 | 209.0 | 12.0 | 210.0 | 265.0 | 429.0 | 2845.0 |
T31/4 | 700.0 | 813.0 | 4.06 | 212.0 | 12.0 | 210.0 | 265.0 | 429.0 | 1397.0 | |
M3O | [30] | 947.0 | 608.0 | 2.01 | 102.0 | 10.1 | 210.0 | 261.0 | 269.0 | 947.0 |
3D1 | [31] | 594.0 | 594.0 | 2.00 | 250.0 | 12.0 | 210.0 | 276.0 | 212.0 | 2670.0 |
3D3 | 594.0 | 594.0 | 2.00 | 250.0 | 12.0 | 210.0 | 276.0 | 212.0 | 1070.0 | |
TGV1-1 | [32] | 1200.0 | 600.0 | 2.07 | 200.0 | 10.0 | 210.0 | 211.0 | 247.0 | 1200.0 |
TGV1-2 | 600.0 | 600.0 | 2.07 | 200.0 | 10.0 | 210.0 | 211.0 | 247.0 | 1200.0 | |
TGV2-2 | 600.0 | 600.0 | 2.08 | 200.0 | 10.0 | 210.0 | 211.0 | 247.0 | 1200.0 | |
TGV3-2 | 600.0 | 600.0 | 2.01 | 200.0 | 10.0 | 210.0 | 211.0 | 247.0 | 1200.0 | |
TGV4 | 597.0 | 598.0 | 1.97 | 201.0 | 10.1 | 210.0 | 224.0 | 255.0 | 1193.0 | |
TGV5 | 595.0 | 598.0 | 1.98 | 201.0 | 10.0 | 210.0 | 232.0 | 252.0 | 1189.0 | |
TGV6 | 595.0 | 598.0 | 1.97 | 201.0 | 10.1 | 210.0 | 228.0 | 254.0 | 1190.0 | |
TGV7-2 | 596.0 | 599.0 | 1.98 | 201.0 | 10.1 | 210.0 | 221.0 | 250.0 | 1191.0 | |
TGV10-1 | 595.0 | 599.0 | 1.91 | 200.0 | 10.0 | 210.0 | 219.0 | 284.0 | 1189.0 | |
TGV10-2 | 595.0 | 599.0 | 1.91 | 200.0 | 10.0 | 210.0 | 219.0 | 284.0 | 1191.0 | |
TGV11-2 | 597.0 | 599.0 | 1.91 | 200.0 | 10.0 | 210.0 | 220.0 | 211.0 | 1194.0 | |
33/1 | [33] | 300.0 | 300.0 | 1.03 | 35.0 | 3.2 | 200.0 | 169.0 | 295.0 | 300.0 |
34/1 | 345.0 | 351.0 | 1.07 | 40.0 | 3.2 | 200.0 | 169.0 | 295.0 | 345.0 | |
35/1 | 400.0 | 399.0 | 1.09 | 39.0 | 3.2 | 200.0 | 169.0 | 295.0 | 400.0 | |
32/1.5 | 375.0 | 249.0 | 1.05 | 40.0 | 3.2 | 200.0 | 169.0 | 295.0 | 375.0 | |
33/1.5 | 450.0 | 301.0 | 1.03 | 39.0 | 3.2 | 200.0 | 169.0 | 295.0 | 450.0 | |
34/1.5 | 522.0 | 352.0 | 1.10 | 39.0 | 3.3 | 200.0 | 169.0 | 295.0 | 522.0 | |
L31-PA | [34] | 942.0 | 608.0 | 2.10 | 100.0 | 10.0 | 191.0 | 183.0 | 269.0 | 942.0 |
L33-PA | 947.0 | 608.0 | 2.46 | 100.0 | 10.1 | 197.0 | 201.0 | 283.0 | 947.0 | |
MC31-PB3 | [35] | 732.0 | 1000.0 | 4.40 | 300.0 | 15·1 | 210.0 | 169·7 | 226·6 | 1464.0 |
PA1 | [36] | 600.0 | 800.0 | 1.00 | 249.0 | 12.0 | 210.0 | 216.0 | 206.0 | 3000.0 |
PA2 | 600.0 | 800.0 | 1.00 | 249.0 | 12.0 | 210.0 | 216.0 | 206.0 | 2400.0 | |
PA3 | 600.0 | 800.0 | 1.00 | 249.0 | 12.0 | 210.0 | 216.0 | 206.0 | 1800.0 | |
PB1 | 500.0 | 800.0 | 1.00 | 249.0 | 12.0 | 210.0 | 216.0 | 206.0 | 3000.0 | |
PB2 | 500.0 | 800.0 | 1.00 | 249.0 | 12.0 | 210.0 | 216.0 | 206.0 | 2500.0 | |
PC1 | 1000.0 | 800.0 | 1.00 | 250.0 | 10·0 | 210.0 | 216.0 | 262.0 | 2750.0 | |
PC2 | 1000.0 | 800.0 | 1.00 | 250.0 | 10.0 | 210.0 | 216.0 | 262.0 | 1750.0 | |
PD1 | 750.0 | 800.0 | 1.00 | 250.0 | 10.0 | 210.0 | 216.0 | 262.0 | 2750.0 | |
PD2 | 750.0 | 800.0 | 1.00 | 250.0 | 10.0 | 210.0 | 216.0 | 262.0 | 2000.0 | |
PD3 | 750.0 | 800.0 | 1.00 | 250.0 | 10.0 | 210.0 | 216.0 | 262.0 | 1250.0 | |
PC3 | 750.0 | 800.0 | 1.00 | 250.0 | 10.0 | 210.0 | 216.0 | 262.0 | 750.0 | |
PB3 | [37] | 732.0 | 1000.0 | 4.40 | 300.0 | 15.1 | 205.0 | 169.7 | 226.6 | 1464.0 |
PB4 | 732.0 | 1000.0 | 4.40 | 300.0 | 15.1 | 205.0 | 169.7 | 226.6 | 1464.0 | |
B1 | [38] | 9000.0 | 600.0 | 2.86 | 226.0 | 9.9 | 210.0 | 419.0 | 294.0 | 0.0 |
B4 | 9000.0 | 600.0 | 2.00 | 151.0 | 6.1 | 210.0 | 280.0 | 304.0 | 0.0 | |
K1 | 6000.0 | 600.0 | 2.86 | 226.0 | 9.9 | 210.0 | 419.0 | 294.0 | 0.0 | |
1A | [39] | 8100.0 | 600.0 | 2.96 | 225.0 | 10.0 | 210.0 | 243.0 | 251.0 | 0.0 |
1B | 8100.0 | 600.0 | 2.97 | 225.0 | 10.0 | 210.0 | 243.0 | 251.0 | 0.0 | |
2A | 8100.0 | 600.0 | 3.00 | 225.0 | 10.0 | 210.0 | 243.0 | 251.0 | 0.0 | |
2B | 8100.0 | 600.0 | 2.94 | 225.0 | 10.0 | 210.0 | 243.0 | 251.0 | 0.0 | |
3A | 8100.0 | 600.0 | 2.00 | 150.0 | 6.0 | 210.0 | 292.0 | 286.0 | 0.0 | |
3B | 8100.0 | 600.0 | 2.00 | 150.0 | 6.0 | 210.0 | 292.0 | 286.0 | 0.0 | |
4A | 8100.0 | 600.0 | 2.01 | 150.0 | 6.0 | 210.0 | 292.0 | 286.0 | 0.0 | |
4B | 8100.0 | 600.0 | 2.03 | 150.0 | 6.0 | 210.0 | 292.0 | 286.0 | 0.0 | |
CP1/1 | [40] | 747.0 | 500.0 | 2·04 | 100.0 | 8·0 | 210.0 | 246.0 | 256.0 | 747.0 |
RCP1/1 | [41] | 710.0 | 718.0 | 2·01 | 100.0 | 8·1 | 210.0 | 271.0 | 288.0 | 710.0 |
Mathematical | MATLAB | Microsoft Excel |
---|---|---|
tansig (x) | 2/(1 + exp(-2*x)) − 1 | |
, | purelin (x,y,z) | sum(x(n1:n2)*y(n1:n2)) + z |
Girder/Test Reference | Vexp (kN) | Vprop (kN) | Vexp/Vprop | Vba.Rd (kN) | Vexp/V ba.Rd | Vbb.Rd (kN) | Vexp/Vbb.Rd | |
---|---|---|---|---|---|---|---|---|
(Proposed) | (Proposed) | (EC3, Simple) | (EC3, Tension) | |||||
C4 | [24] | 41 | 37.35 | 0.91 | 39.42 | 0.96 | 54.67 | 1.33 |
G6-T1 | [20] | 516 | 537.95 | 1.04 | 303.53 | 0.59 | 416.13 | 0.81 |
G6-T2 | 662 | 706.93 | 1.07 | 418.99 | 0.63 | 636.54 | 0.96 | |
G6-T3 | 787 | 772.91 | 0.98 | 574.45 | 0.73 | 794.95 | 1.01 | |
G7-T1 | 623 | 639.45 | 1.03 | 360.12 | 0.58 | 541.74 | 0.87 | |
G7-T2 | 645 | 639.45 | 0.99 | 360.34 | 0.56 | 537.50 | 0.83 | |
G8-T1 | 375 | 376.08 | 1.00 | 300.00 | 0.80 | 279.85 | 0.75 | |
G8-T2 | 445 | 578.47 | 1.30 | 332.09 | 0.75 | 454.08 | 1.02 | |
G8-T3 | 516 | 511.50 | 0.99 | 332.90 | 0.65 | 393.89 | 0.76 | |
G9-T1 | 213 | 214.15 | 1.01 | 139.22 | 0.65 | 178.99 | 0.84 | |
G9-T2 | 334 | 333.18 | 1.00 | 154.63 | 0.46 | 309.26 | 0.93 | |
G9-T3 | 352 | 353.82 | 1.01 | 154.39 | 0.44 | 290.91 | 0.83 | |
E1T2 | [21] | 3421 | 3439.79 | 1.01 | 2165.19 | 0.63 | 2693.70 | 0.79 |
E2T1 | 4079 | 4082.71 | 1.00 | 2472.12 | 0.61 | 4205.15 | 1.03 | |
C-AC2 | [22] | 120 | 116.51 | 0.97 | 98.36 | 0.82 | 84.51 | 0.70 |
C-AC4 | 245 | 265.62 | 1.08 | 197.58 | 0.81 | 205.88 | 0.84 | |
C-AC5 | 232 | 252.25 | 1.09 | 198.29 | 0.85 | 214.81 | 0.93 | |
B | [23] | 760 | 757.18 | 1.00 | 408.60 | 0.54 | 710.28 | 0.93 |
3-2 | [24] | 161 | 162.42 | 1.01 | 146.36 | 0.91 | 154.81 | 0.96 |
3-3 | 198 | 196.44 | 0.99 | 154.69 | 0.78 | 180.00 | 0.91 | |
2-2 | [25] | 75 | 73.61 | 0.98 | 46.88 | 0.63 | 49.67 | 0.66 |
TG3 | [26] | 190 | 190.09 | 1.00 | 80.51 | 0.42 | 177.57 | 0.93 |
TG3·1 | 190 | 190.09 | 1.00 | 80.51 | 0.42 | 177.57 | 0.93 | |
TG4 | 219 | 217.07 | 0.99 | 80.51 | 0.37 | 195.54 | 0.89 | |
TG4-1 | 207 | 209.25 | 1.01 | 80.54 | 0.39 | 195.28 | 0.94 | |
TG5 | 308 | 305.66 | 0.99 | 80.42 | 0.26 | 240.63 | 0.78 | |
TG5-1 | 300 | 305.66 | 1.02 | 80.43 | 0.27 | 240.00 | 0.80 | |
U32/5 | [27] | 135 | 136.26 | 1.01 | 112.50 | 0.83 | 123.85 | 0.92 |
U33/5 | 90 | 90.67 | 1.01 | 86.54 | 0.96 | 95.74 | 1.06 | |
TG14 | [28] | 25 | 25.13 | 1.01 | 12.50 | 0.50 | 19.38 | 0.78 |
TG15 | 29 | 28.92 | 1.00 | 12.50 | 0.43 | 22.48 | 0.78 | |
TG16 | 32 | 32.55 | 1.02 | 12.75 | 0.40 | 26.89 | 0.84 | |
TG17 | 39 | 42.72 | 1.10 | 12.70 | 0.33 | 31.45 | 0.81 | |
TG18 | 51 | 47.94 | 0.94 | 12.81 | 0.25 | 39.53 | 0.78 | |
TG19 | 55 | 54.65 | 0.99 | 12.79 | 0.23 | 42.97 | 0.78 | |
TG22 | 79 | 76.32 | 0.97 | 57.25 | 0.72 | 66.95 | 0.85 | |
TG23 | 81 | 82.78 | 1.02 | 56.64 | 0.70 | 72.97 | 0.90 | |
TG24 | 96 | 97.67 | 1.02 | 56.80 | 0.59 | 80.67 | 0.84 | |
TG25 | 104 | 114.14 | 1.10 | 56.83 | 0.55 | 83.20 | 0.80 | |
3TG1 | 60 | 62.73 | 1.05 | 48.39 | 0.81 | 59.41 | 0.99 | |
3TG2 | 40 | 39.19 | 0.98 | 32.26 | 0.81 | 40.00 | 1.00 | |
3TG4 | 35 | 36.92 | 1.05 | 18.52 | 0.53 | 24.82 | 0.71 | |
RTG1 | 40 | 36.40 | 0.91 | 22.99 | 0.57 | 31.01 | 0.78 | |
RTG2 | 41 | 38.09 | 0.93 | 23.16 | 0.56 | 31.54 | 0.77 | |
RTG4 | 24 | 28.11 | 1.17 | 13.11 | 0.55 | 22.64 | 0.94 | |
T31/3 | [29] | 312 | 315.55 | 1.01 | 266.67 | 0.85 | 308.91 | 0.99 |
T31/4 | 387 | 439.11 | 1.13 | 266.90 | 0.69 | 372.12 | 0.96 | |
M3O | [30] | 94 | 91.87 | 0.98 | 51.65 | 0.55 | 75.81 | 0.81 |
3D1 | [31] | 129 | 127.76 | 0.99 | 60.56 | 0.47 | 100.00 | 0.78 |
3D3 | 156 | 154.31 | 0.99 | 60.47 | 0.39 | 122.83 | 0.79 | |
TGV1-1 | [32] | 83.00 | 78.64 | 0.95 | 46.63 | 0.56 | 64.34 | 0.78 |
TGV1-2 | 111.00 | 110.92 | 1.00 | 56.63 | 0.51 | 99.11 | 0.89 | |
TGV2-2 | 115.00 | 112.18 | 0.98 | 57.21 | 0.50 | 99.14 | 0.86 | |
TGV3-2 | 113.00 | 105.52 | 0.93 | 53.55 | 0.47 | 94.96 | 0.84 | |
TGV4 | 102.00 | 107.54 | 1.05 | 52.85 | 0.52 | 99.03 | 0.97 | |
TGV5 | 105.00 | 111.58 | 1.06 | 54.69 | 0.52 | 100.96 | 0.96 | |
TGV6 | 102.00 | 109.27 | 1.07 | 53.40 | 0.52 | 100.00 | 0.98 | |
TGV7-2 | 106.00 | 106.76 | 1.01 | 53.27 | 0.50 | 98.15 | 0.93 | |
TGV10-1 | 102.00 | 99.28 | 0.97 | 49.28 | 0.48 | 96.23 | 0.94 | |
TGV10-2 | 106.00 | 99.28 | 0.94 | 49.30 | 0.47 | 96.36 | 0.91 | |
TGV11-2 | 102.00 | 95.72 | 0.94 | 49.28 | 0.48 | 89.47 | 0.88 |
Flange Classification | Web Classification | tf/tw | bf/hw | b/d | L/b |
---|---|---|---|---|---|
Compact | Compact | - | - | ≤2.5 | - |
Compact | Non-Compact | ≤6.5 | - | - | - |
Compact | Slender | - | ≤0.33 | - | - |
Non-Compact | Slender | - | - | ≤1 | ≥2 |
≤2.5 | 1 | ||||
Slender | Slender | No specimens with flat web available |
Coupon Type | Average fy (N/mm2) | Average fu (N/mm2) | Average E (Gpa) | Maximum Strain |
---|---|---|---|---|
Flange | 245 | 330 | 198 | 0.024 |
Web | 420 | 525 | 200 | 0.036 |
Specimen | Failure Load (kN) | Failure Mode Mechanisms | Deflection at pu | |||
---|---|---|---|---|---|---|
Web | Flange | Position | ||||
Mode | Angle | δ, mm | ||||
B1-3P | 188 | LB * | 28° | -- | Shear panel | 3.02 |
B2-4P | 212 | LB * | 29° | -- | Support panel | 4.2 |
Girder/Test Reference | b mm | d mm | t mm | bf mm | tf mm | E kN/mm2 | σyw N/mm2 | σyf N/mm2 | la mm | |
---|---|---|---|---|---|---|---|---|---|---|
PG1-1 | [60] | 600 | 600 | 4.1 | 200 | 12.5 | 200 | 343 | 257 | 600 |
PG2-1 | 900 | 900 | 3.1 | 300 | 10.2 | 200 | 285 | 254 | 900 | |
PG3-1 | 900 | 600 | 3.2 | 200 | 10.1 | 200 | 282 | 264 | 900 | |
PG4-1 | 1000 | 500 | 1.9 | 200 | 9.9 | 200 | 250 | 293 | 1000 |
Girder/Test Reference | Flange | Web | tf /tw | bf/hw | b/d | L/b |
---|---|---|---|---|---|---|
B1-3P | Non-compact | Slender | 2.67 | 0.52 | 2.34 * | 1 * |
B2-4P | Non-compact | Slender | 2.67 | 0.52 | 2.08 * | 1 * |
PG1-1 | Compact | Slender | 3.05 | 0.33 * | 1 | 1 |
PG2-1 | Non-Compact | Slender | 3.29 | 0.33 | 1 * | 1 * |
PG3-1 | Compact | Slender | 3.16 | 0.33 * | 1.50 | 1 |
PG4-1 | Non-Compact | Slender | 5.21 | 0.40 | 2 * | 1 * |
Girder/Test Reference | Vexp (kN) | Equation (20) V (kN) | Vprop (kN) | Vprop/Vexp | ||
---|---|---|---|---|---|---|
B1-3P | Authors | 94 | 96.12 | 0.99 | 97.09 | 103% |
B2-4P | 106 | 105.98 | 1.02 | 103.90 | 98% | |
PG1-1 | [60] | 373 | 298.40 | 0.819 | 364.54 | 98% |
PG2-1 | 271 | 281.15 | 1.070 | 262.85 | 97% | |
PG3-1 | 202 | 150.20 | 0.761 | 197.42 | 98% | |
PG4-1 | 87 | 53.12 | 0.608 | 87.36 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elamary, A.S.; Mohamed, M.A.; Sharaky, I.A.; Mohamed, A.K.; Alharthi, Y.M.; Ali, M.A.M. Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs. Metals 2023, 13, 232. https://doi.org/10.3390/met13020232
Elamary AS, Mohamed MA, Sharaky IA, Mohamed AK, Alharthi YM, Ali MAM. Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs. Metals. 2023; 13(2):232. https://doi.org/10.3390/met13020232
Chicago/Turabian StyleElamary, Ahmed S., Mohamed A. Mohamed, Ibrahim A. Sharaky, Abdou K. Mohamed, Yasir M. Alharthi, and Mahrous A. M. Ali. 2023. "Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs" Metals 13, no. 2: 232. https://doi.org/10.3390/met13020232
APA StyleElamary, A. S., Mohamed, M. A., Sharaky, I. A., Mohamed, A. K., Alharthi, Y. M., & Ali, M. A. M. (2023). Utilizing Artificial Intelligence Approaches to Determine the Shear Strength of Steel Beams with Flat Webs. Metals, 13(2), 232. https://doi.org/10.3390/met13020232