Effect of Ce Content on the Microstructure and Mechanical Properties of Al-Cu-Li Alloy
Abstract
:1. Introduction
2. Experimental Materials and Procedures
3. Results and Discussion
3.1. Microstructures of As-Cast Alloys
3.2. Microstructures of the Alloys after Hot Rolling
3.3. Microstructure and the Mechanical Properties of the Alloys after T6 Treatment
3.4. Discussion of Effecting Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rioja, R.J.; Liu, J. The evolution of Al-Li base products for aerospace and space applications. Metall. Mater. Trans. A 2012, 43, 3325–3337. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Araullo-Peters, V.; Gault, B.; de Geuser, F.; Deschamps, A.; Cairney, J.M. Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Mater. 2014, 66, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Aty, A.; Xu, Y.; Guo, X.; Zhang, S.-H.; Ma, Y.; Chen, D. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A Review. J. Adv. Res. 2018, 10, 49–67. [Google Scholar] [CrossRef]
- Ma, P.P.; Zhan, L.H.; Liu, C.H.; Wang, Q.; Li, H.; Liu, D.B.; Hu, Z.G. Pre-strain-dependent natural ageing and its effect on subsequent artificial ageing of an Al-Cu-Li alloy. J. Alloys Compd. 2019, 790, 8–19. [Google Scholar] [CrossRef]
- Peng, Z.W.; Li, J.F.; Sang, F.J.; Chen, Y.L.; Zhang, X.H.; Zheng, Z.Q.; Pan, Q.L. Structures and tensile properties of Sc-containing 1445 Al-Li alloy sheet. J. Alloys Compd. 2018, 747, 471–483. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.M.; Shi, D.F. Hot compression deformation behavior and microstructure of as-cast and homogenized AA2195 Al-Li alloy. Metals 2022, 12, 1580. [Google Scholar] [CrossRef]
- Meng, L.; Zheng, X.L. Tension characteristics of notched specimens for Al-Li-Cu-Zr alloy sheets with various cerium contents. Metall. Mater. Trans. A 1996, 27, 3089–3094. [Google Scholar] [CrossRef]
- Suresh, M.; Sharma, A.; More, A.M.; Nayan, N.; Suwas, S. Effect of Scandium addition on evolution of microstructure, texture and mechanical properties of thermo-mechanically processed Al-Li alloy AA2195. J. Alloys Compd. 2018, 740, 364–374. [Google Scholar] [CrossRef]
- Yu, T.F.; Li, B.C.; Medjahed, A.; Hou, L.G.; Wu, R.Z.; Zhang, J.H.; Sun, J.F.; Zhang, M.L. Impeding effect of the Al3(Er,Zr,Li) particles on planar slip and intergranular fracture mechanism of Al-3Li-1Cu-0.1Zr-X alloys. Mater. Charact. 2019, 147, 146–154. [Google Scholar] [CrossRef]
- Liu, T.; Dong, Q.; Fu, Y.N.; Yang, J.; Zhang, J.; Sun, B.D. Effect of addition of La and Ce on solidification behavior of Al-Cu alloys. Mater. Lett. 2022, 324, 132653. [Google Scholar] [CrossRef]
- Xiao, D.H.; Wang, J.N.; Ding, D.Y.; Yang, H.L. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. J. Alloys Compd. 2003, 352, 84–88. [Google Scholar] [CrossRef]
- Zakharov, V.V. Special features of crystallization of scandium-alloyed aluminum alloys. Met. Sci. Heat Treat. 2012, 53, 414–419. [Google Scholar] [CrossRef]
- Belov, N.A.; Khvan, A.V.; Alabin, A.N. Microstructure and phase composition of Al–Ce–Cu Alloys in the Al-Rich corner. Mater. Sci. Forum 2006, 519–521, 395–400. [Google Scholar] [CrossRef]
- Belov, N.A.; Khvan, A.V. The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Mater. 2007, 55, 5473–5482. [Google Scholar] [CrossRef]
- Bo, H.; Jin, S.; Zhang, L.G.; Chen, X.M.; Chen, H.M.; Liu, L.B.; Zheng, F.; Jin, Z.P. Thermodynamic assessment of Al–Ce–Cu system. J. Alloys Compd. 2009, 484, 286–295. [Google Scholar] [CrossRef]
- Chaubey, A.K.; Mohapatra, S.; Jayasankar, K.; Pradhan, S.K.; Satpati, B.; Sahay, S.S.; Mishra, B.K.; Mukherjee, P.S. Effect of cerium addition on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Trans. Indian Inst. Met. 2009, 62, 539–543. [Google Scholar] [CrossRef]
- Yu, X.X.; Yin, D.F.; Yu, Z.M. Effects of cerium and zirconium microalloying addition on the microstructures and tensile properties of novel Al-Cu-Li alloys. Rare Met. Mater. Eng. 2016, 45, 1917–1923. [Google Scholar]
- Ma, Y.L.; Li, J.F. Variation of aging precipitates and mechanical strength of Al-Cu-Li alloys caused by small addition of rare earth elements. J. Mater. Eng. Perform. 2017, 26, 4329–4339. [Google Scholar] [CrossRef]
- Fang, H.C.; Chen, K.H.; Zhang, Z.; Zhu, C.J. Effect of Yb additions on microstructures and properties of 7A60 aluminum alloy. Trans. Nonferrous Met. Soc. China 2008, 18, 28–32. [Google Scholar] [CrossRef]
- Fang, H.C.; Chao, H.; Chen, K.H. Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy. J. Alloys Compd. 2015, 622, 166–173. [Google Scholar] [CrossRef]
- Qin, C.; Gou, G.Q.; Che, X.L.; Chen, H.; Chen, J.; Li, P.; Gao, W. Effect of composition on tensile properties and fracture toughness of Al–Zn–Mg alloy (A7N01S-T5) used in high speed trains. Mater. Des. 2016, 91, 278–285. [Google Scholar] [CrossRef]
- Cong, F.G.; Zhao, G.; Jiang, F.; Tian, N.; Li, R.F. Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 1027–1034. [Google Scholar] [CrossRef]
- Pasang, T.; Symonds, N.; Moutsos, S.; Wanhill, R.J.H.; Lynch, S.P. Low-energy intergranular fracture in Al–Li alloys. Eng. Fail. Anal. 2012, 22, 166–178. [Google Scholar] [CrossRef]
- Ma, J.; Yan, D.S.; Rong, L.J.; Li, Y.Y. Effect of Sc addition on microstructure and mechanical properties of 1460 alloy. Prog. Nat. Sci. Mater. Int. 2014, 24, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.X.; Dai, H.; Li, Z.T.; Sun, J.; Zhao, J.F.; Li, C.Q.; Liu, W.W. Improved recrystallization resistance of Al–Cu–Li–Zr alloy through Ce addition. Metals 2018, 8, 1035. [Google Scholar] [CrossRef] [Green Version]
- Zuo, J.R.; Hou, L.G.; Shi, J.T.; Cui, H.; Zhuang, L.Z.; Zhang, J.S. The mechanism of grain refinement and plasticity enhancement by an improved thermomechanical treatment of 7055 Al alloy. Mater. Sci. Eng. A 2017, 702, 42–52. [Google Scholar] [CrossRef]
- da Costa Teixeira, J.; Cram, D.G.; Bourgeois, L.; Bastow, T.J.; Hill, A.J.; Hutchinson, C.R. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates. Acta Mater. 2008, 56, 6109–6122. [Google Scholar] [CrossRef]
- Deschamps, A.; Decreus, B.; De Geuser, F.; Dorin, T.; Weyland, M. The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 2013, 61, 4010–4021. [Google Scholar] [CrossRef]
- Wang, W.T.; Zhang, X.M.; Gao, Z.G.; Jia, Y.Z.; Ye, L.Y.; Zheng, D.W.; Liu, L. Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J. Alloys Compd. 2010, 491, 366–371. [Google Scholar] [CrossRef]
- Kumar, K.S.; Brown, S.A.; Pickens, J.R. Microstructural evolution during aging of an Al-Cu-Li-Ag-Mg-Zr alloy. Acta Mater. 1996, 44, 1899–1915. [Google Scholar] [CrossRef]
- Yu, X.X.; Yin, D.F.; Yu, Z.M.; Zhang, Y.R.; Li, S.F. Effects of cerium addition on solidification behaviour and intermetallic structure of novel Al–Cu–Li alloys. Rare Met. Mater. Eng. 2016, 45, 1423–1429. [Google Scholar]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Yu, X.X.; Yin, D.F.; Yu, Z.M.; Zhang, Y.R.; Li, S.F. Microstructure evolution of novel Al-Cu-Li-Ce alloys during homogenization. Rare Met. Mater. Eng. 2016, 45, 1687–1694. [Google Scholar]
- Balducci, E.; Ceschini, L.; Messieri, S.; Wenner, S.; Holmestad, R. Thermal stability of the lightweight 2099 Al-Cu-Li alloy: Tensile tests and microstructural investigations after overaging. Mater. Des. 2017, 119, 54–64. [Google Scholar] [CrossRef]
Alloy | Cu | Li | Mg | Mn | Zn | Zr | Ce | Al |
---|---|---|---|---|---|---|---|---|
AL1 | 3.5 | 1.2 | 0.5 | 0.3 | 0.3 | 0.11 | – | Bal. |
AL2 | 3.5 | 1.2 | 0.5 | 0.3 | 0.3 | 0.11 | 0.1 | Bal. |
AL3 | 3.5 | 1.2 | 0.5 | 0.3 | 0.3 | 0.11 | 0.2 | Bal. |
AL4 | 3.5 | 1.2 | 0.5 | 0.3 | 0.3 | 0.11 | 0.3 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Lu, Y.; Wang, J.; Li, X.; Zhou, D. Effect of Ce Content on the Microstructure and Mechanical Properties of Al-Cu-Li Alloy. Metals 2023, 13, 253. https://doi.org/10.3390/met13020253
Ding X, Lu Y, Wang J, Li X, Zhou D. Effect of Ce Content on the Microstructure and Mechanical Properties of Al-Cu-Li Alloy. Metals. 2023; 13(2):253. https://doi.org/10.3390/met13020253
Chicago/Turabian StyleDing, Xianxian, Yalin Lu, Jian Wang, Xingcheng Li, and Dongshuai Zhou. 2023. "Effect of Ce Content on the Microstructure and Mechanical Properties of Al-Cu-Li Alloy" Metals 13, no. 2: 253. https://doi.org/10.3390/met13020253
APA StyleDing, X., Lu, Y., Wang, J., Li, X., & Zhou, D. (2023). Effect of Ce Content on the Microstructure and Mechanical Properties of Al-Cu-Li Alloy. Metals, 13(2), 253. https://doi.org/10.3390/met13020253