Biomimetic Design of Fatigue-Testing Fixture for Artificial Cervical Disc Prostheses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomimetic Design of Fatigue-Testing Fixture
2.1.1. Structural Bionics of Fatigue-Testing Fixture
2.1.2. Functional Bionics of Fatigue-Testing Fixture
2.2. The Process of Fatigue Simulation and Fatigue Test
3. Results
3.1. Optimization of the Biomimetic Fatigue-Testing Fixture
3.2. Simulation of DCI within the Optimized Fixture under Static Mode
3.3. Fatigue Simulation and Fatigue Experiment
4. Discussion
4.1. The Rationality of the Static Load Settings
4.2. Optimization of the Biomimetic Fatigue-Testing Fixture
4.3. The Safety of the Biomimetic Fatigue-Testing Fixture
4.4. The Equivalence between the Biomimetic Fatigue-Testing Fixture and the Natural Cervical Sections
4.5. Limitations of the Biomimetic Fatigue-Testing Fixture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilibrand, A.S.; Robbins, M. Adjacent segment degeneration and adjacent segment disease: The consequences of spinal fusion? Spine J. 2004, 4, S190–S194. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Okada, E.; Ichihara, D.; Watanabe, K.; Chiba, K.; Toyama, Y. Adjacent segment disease and degeneration after anterior cervical decompression and fusion. Neurosurg. Q. 2010, 20, 15–22. [Google Scholar] [CrossRef]
- Fiani, B.; Nanney, J.M.; Villait, A.; Sekhon, M.; Doan, T. Investigational research: Timeline, trials, and future directions of spinal disc arthroplasty. Cureus 2021, 13, 16739. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, A.F.; Makhni, M.C.; Riew, K.D. Evidence-based use of arthroplasty in cervical degenerative disc disease. Int. Orthop. 2019, 43, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, M.; Han, G.; Kim, H.; Song, J.; Na, Y.; Yoon, C.; Oh, S.; Jang, T.; Jung, H. Customizable design of multiple-biomolecule delivery platform for enhanced osteogenic responses via ‘tailored assembly system’. Bio-Des. Manuf. 2022, 5, 451–464. [Google Scholar] [CrossRef]
- Lee, H.; Lee, M.; Cheon, K.; Kang, I.; Park, C.; Jang, T.; Han, G.; Kim, H.; Song, J.; Jung, H. Functionally assembled metal platform as lego-like module system for enhanced mechanical tunability and biomolecules delivery. Mater. Design. 2021, 207, 109840. [Google Scholar] [CrossRef]
- Gloria, A.; Causa, F.; De Santis, R.; Netti, P.A.; Ambrosio, L. Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis. Mater. Med. 2007, 18, 2159–2165. [Google Scholar] [CrossRef]
- Rosa, G.L.; Clienti, C.; Corallo, D. Design of a new intervertebral disc prosthesis. Mater. Today Proc. 2019, 7, 529–536. [Google Scholar] [CrossRef]
- Barker, J.B.; Cronin, D.S.; Chandrashekar, N. High rotation rate behavior of cervical spine segments in flexion and extension. J. Biomech. Eng. 2014, 136, 121004. [Google Scholar] [CrossRef]
- Nuckley, D.J.; Linders, D.R.; Ching, R.P. Developmental biomechanics of the human cervical spine. J. Biomech. 2013, 46, 1147–1154. [Google Scholar] [CrossRef]
- Lou, J.; Hao, L.; Li, Y.; Orthopedics, D.O.; Hospital, W.C.; University, S. Biomechanical evaluation of one new artificial cervical disc prosthesis. Orthop. Biomech. Mater. Clin. Study 2016, 13, 10–13. [Google Scholar]
- Patwardhan, A.G.; Havey, R.M. Prosthesis design influences segmental contribution to total cervical motion after cervical disc arthroplasty. Eur. Spine J. 2020, 29, 2713–2721. [Google Scholar] [CrossRef]
- Toen, C.V.; Melnyk, A.D.; Street, J.; Oxland, T.R.; Cripton, P.A. The Effects of Lateral Eccentricity on Failure Loads and Injuries of the Cervical Spine in Head-First Impacts. In Proceedings of the Ohio State University’s 10th Annual Injury Biomechanics Symposium, Columbus, OH, USA, 18–20 May 2014; p. 18. [Google Scholar]
- Rezaei, A.; Giambini, H.; Carlson, K.D.; Xu, H.; Lu, L. Mechanical testing setups affect spine segment fracture outcomes. J. Mech. Behav. Biomed. 2019, 100, 103399. [Google Scholar] [CrossRef]
- Rahm, M.; Brooks, D.; Harris, J.; Hart, R.; Hughes, J.; Ferrick, B.; Bucklen, B. Stabilizing effect of the rib cage on adjacent segment motion following thoracolumbar posterior fixation of the human thoracic cadaveric spine: A biomechanical study. Clin. Biomech. 2019, 70, 217–222. [Google Scholar] [CrossRef]
- Mannen, E.M.; Friis, E.A.; Sis, H.L.; Wong, B.M.; Cadel, E.S.; Anderson, D.E. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments. J. Mech. Behav. Biomed. 2018, 84, 258. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.H.; Woods, D.; Miller, M.; Murrell, B.; Vadapalli, S. Use of the dual construct lowers rod strains in flexion-extension and lateral bending compared to two-rod and two-rod satellite constructs in a cadaveric spine corpectomy model. Spine J. 2021, 21, 2104–2111. [Google Scholar] [CrossRef]
- Holsgrove, T.P.; Miles, A.W.; Gheduzzi, S. The application of physiological loading using a dynamic, multi-axis spine simulator. Med. Eng. Phys. 2017, 41, 74–80. [Google Scholar] [CrossRef]
- Phillips, F.M.; Geisler, F.H.; Gilder, K.M.; Reah, C.; Howell, K.M.; McAfee, P.C. Long-term outcomes of the us fda ide prospective, randomized controlled clinical trial comparing pcm cervical disc arthroplasty with anterior cervical discectomy and fusion. Spine 2015, 40, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; Estes, B.T. What standards can (and can’t) tell us about a spinal device. SAS J. 2009, 3, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Mannen, E.M. Mechanical Testing of the Thoracic Spine and Related Implants. In Mechanical Testing of Orthopaedic Implants; Woodhead Publishing: Sawston, UK, 2017; pp. 143–160. [Google Scholar]
- Cza, B.; Emm, C.; Hls, D.; Esc, D.; Bmw, D.; Ww, B.; Bo, C.B.; Eaf, D.; Deaa, E. Moment-rotation behavior of intervertebral joints in flexion-extension, lateral bending, and axial rotation at all levels of the human spine: A structured review and meta-regression analysis. J. Biomech. 2020, 100, 109579. [Google Scholar]
- Sherrill, J.T.; Siddicky, S.F.; Davis, W.D.; Chen, C.; Mannen, E.M. Validation of a custom spine biomechanics simulator: A case for standardization. J. Biomech. 2019, 98, 109470. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.J.; Zhao, Y.B.; Wang, L.Z.; Sun, Y.; Zhang, M.; Fan, Y.B. Biomechanical effects of cervical arthroplasty with u-shaped disc implant on segmental range of motion and loading of surrounding soft tissue. Eur. Spine J. 2014, 23, 613–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, E.C.; Ng, H.W. Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method. Med. Eng. Phys. 2001, 23, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Vette, A.H.; Yoshida, T.; Thrasher, T.A.; Masani, K.; Popovic, M.R. A comprehensive three-dimensional dynamic model of the human head and trunk for estimating lumbar and cervical joint torques and forces from upper body kinematics. Med. Eng. Phys. 2012, 34, 640–649. [Google Scholar] [CrossRef]
- Nimbarte, A.D.; Zreiqat, M.; Ning, X. Impact of shoulder position and fatigue on the flexion-relaxation response in cervical spine. Clin. Biomech. 2014, 29, 277–282. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, T.; Pan, C. Finite element analysis and validation of segments c2-c7 of the cervical spine. Metals 2022, 12, 2056. [Google Scholar] [CrossRef]
- Kim, S.B.; Bak, K.H.; Cheong, J.H.; Kim, J.M.; Kim, C.H.; Oh, S.H. Biomechanical testing of anterior cervical spine implants: Evaluation of changes in strength characteristics and metal fatigue resulting from minimal bending and cyclic loading. J. Korean Neurosurg. Soc. 2005, 37, 217–222. [Google Scholar]
- Bai, C.; Wei, W.; Hou, D. Biomechanical analysis of a new titanium rubber cervical disc prosthesis. Chin. J. Spine Spinal Cord. 2014, 24, 752–756. [Google Scholar]
- Elder, J.E.; Thamburaj, R.; Patnaik, P.C. Optimising ion implantation conditions for improving wear, fatigue, and fretting fatigue of ti-6ai-4v. Surf. Eng. 1989, 5, 55–79. [Google Scholar] [CrossRef]
- Kim, W.J.; Hyun, C.Y.; Kim, H.K. Fatigue strength of ultrafine-grained pure ti after severe plastic deformation. Scripta Mater. 2006, 54, 1745–1750. [Google Scholar] [CrossRef]
- Espinoza-Larios, A.; Ames, C.P.; Chamberlain, R.H.; Sonntag, V.; Dickman, C.A.; Crawford, N.R. Biomechanical comparison of two-level cervical locking posterior screw/rod and hook/rod techniques. Spine J. 2007, 7, 194–204. [Google Scholar] [CrossRef]
- Arjmand, N.; Gagnon, D.; Plamondon, A.; Shirazi-Adl, A.; Larivière, C. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Clin. Biomech. 2009, 24, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Toosizadeh, N.; Haghpanahi, M. Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads. Sci. Iran. 2011, 18, 1237–1245. [Google Scholar] [CrossRef]
- Li, Y.; Lewis, G. Influence of surgical treatment for disc degeneration disease at c5–c6 on changes in some biomechanical parameters of the cervical spine. Med. Eng. Phys. 2010, 32, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M.; Cholewicki, J.; Nibu, K.; Grauer, J.N.; Babat, L.B.; Dvorak, J. Mechanism of whiplash injury. Clin. Biomech. 1998, 13, 239–249. [Google Scholar] [CrossRef]
Description | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Blocks | 20,000 | 0.35 |
6061 Al alloy | 70,000 | 0.3 |
Pure Ti | 110,000 | 0.3 |
Ti6Al4V | 110,000 | 0.3 |
Epoxy AB glue | 3000 | 0.38 |
Cortical bone | 10,000 | 0.4 |
Cancellous bone | 100 | 0.29 |
Ligamentum flavum | 1.5 | 0.3 |
Interspinous ligament | 1.5 | 0.3 |
Capsular ligament | 20 | 0.3 |
Type of Load | DCI Material | Simulated Fatigue Life of DCI within C5–C6 Cervical Spinal Segments (Million Cycles) | Simulated Fatigue Life of DCI within Fatigue-Testing Fixture (Million Cycles) | Fatigue-Testing Life of DCI within Fatigue-Testing Fixture (Million Cycles) |
---|---|---|---|---|
Flexion | Ti | 22.397 | 21.478 | 35.645 |
Ti6Al4V | ≥80 | ≥80 | ≥80 | |
Extension | Ti | ≥80 | ≥80 | ≥80 |
Ti6Al4V | ≥80 | ≥80 | ≥80 | |
Lateral bending | Ti | ≥80 | ≥80 | ≥80 |
Ti6Al4V | ≥80 | ≥80 | ≥80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Bai, J.; Wang, T. Biomimetic Design of Fatigue-Testing Fixture for Artificial Cervical Disc Prostheses. Metals 2023, 13, 299. https://doi.org/10.3390/met13020299
Cheng X, Bai J, Wang T. Biomimetic Design of Fatigue-Testing Fixture for Artificial Cervical Disc Prostheses. Metals. 2023; 13(2):299. https://doi.org/10.3390/met13020299
Chicago/Turabian StyleCheng, Xuejin, Jia Bai, and Tao Wang. 2023. "Biomimetic Design of Fatigue-Testing Fixture for Artificial Cervical Disc Prostheses" Metals 13, no. 2: 299. https://doi.org/10.3390/met13020299
APA StyleCheng, X., Bai, J., & Wang, T. (2023). Biomimetic Design of Fatigue-Testing Fixture for Artificial Cervical Disc Prostheses. Metals, 13(2), 299. https://doi.org/10.3390/met13020299