Mechanical and Corrosion Properties of Mg–Gd–Cu–Zr Alloy for Degradable Fracturing Ball Applications
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Microstructure and Phase
3.2. Mechanical Properties
3.3. Corrosion Behavior
4. Conclusions
- (1)
- The microstructure of the as-extruded Mg–6.0Gd–1.2Cu–1.2Zr alloy consists of an α-Mg matrix, a second phase, and un-recrystallized large, elongated grains. After the aging treatment at 170 °C for 8 h, the large, elongated grains disappear due to static recrystallization and a lamellar LPSO structure is formed because of the diffusion of the Gd and Cu atoms.
- (2)
- The tensile yield strength of the as-extruded Mg–6.0Gd–1.2Cu–1.2Zr alloy is slightly improved after the aging treatment due to the compromise between solution strengthening, grain refinement strengthening, LPSO strengthening, and second phase strengthening. The significant improvement in elongation after aging or testing at 93 °C is mainly attributed to static recrystallization. The ultimate compressive strength of the as-extruded and as-aged alloys at 93 °C is 374.5 MPa and 336.1 MPa, respectively, which may meet the requirements of underground temperature work.
- (3)
- The corrosion rate of the as-extruded and as-aged Mg–6.0Gd–1.2Cu–1.2Zr alloy in 3 wt.% KCl solution at 93 °C is 1660.8 mm/y and 1955.1 mm/y, respectively. Galvanic corrosion plays a leading role in the whole corrosion process. The aggregated second phase, the formation of the LPSO phase, and the refined grains by static recrystallization are responsible for the more rapid corrosion after the aging treatment.
- (4)
- The comprehensive mechanical properties and corrosion rate of the Mg–6.0Gd–1.2Cu–1.2Zr alloy under the as-extruded and as-aged conditions exceeds most reported Mg alloys, and the alloy shows promising potential for degradable fracturing ball applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, A. Progress and prospects of natural gas development technologies in China. Nat. Gas Ind. B 2018, 5, 547–557. [Google Scholar] [CrossRef]
- Liu, B.; Yang, Y.; Zhang, Y.; Du, H.; Hou, L.; Wei, Y. Investigation of rapidly decomposable AZ91–RE–xCu (x = 0, 1, 2, 3, 4) alloys for petroleum fracturing balls. J. Phys. Chem. Solids 2020, 144, 109499. [Google Scholar] [CrossRef]
- Kang, L.; Shi, Y.; Luo, X.; Liu, B. Influence of Al Content on Degradation Behavior of Cu-Doped Mg–Al Alloys for Drill-Free Plugging Applications. Adv. Mater. Sci. Eng. 2020, 2020, 8898669. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Huang, G.; Chen, L.; Xia, D.; Jiang, B.; Atrens, A.; Pan, F. Effects of Fe concentration on microstructure and corrosion of Mg–6Al–1Zn–xFe alloys for fracturing balls applications. J. Mater. Sci. Technol. 2019, 35, 2086–2098. [Google Scholar] [CrossRef]
- Zhao, X.; Rui, Z.; Liao, X.; Zhang, R. The qualitative and quantitative fracture evaluation methodology in shale gas reservoir. J. Nat. Gas Sci. Eng. 2015, 27, 486–495. [Google Scholar] [CrossRef]
- Li, X.; Zhou, L.; Shi, T.; Li, B.; Yu, W.; Zhang, C.; Yan, P.; Zhang, Q.; Tian, H.; Lv, Y. Corrosion decomposition and mechanical behaviors of As-cast Mg–xZn–Zr alloys. Mater. Corros. 2020, 71, 1453–1461. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Kuang, Y.; Liu, B.; Zhang, K.; Fang, D. Enhanced mechanical properties and degradation rate of Mg–3Zn–1Y based alloy by Cu addition for degradable fracturing ball applications. Mater. Lett. 2017, 195, 194–197. [Google Scholar] [CrossRef]
- Hong, L.; Wang, R.; Zhang, X. The Role of Nd in Corrosion Properties of Mg–12Gd–2Zn–0.4Zr Alloys. J. Mater. Eng. Perform. 2021, 30, 6000–6008. [Google Scholar] [CrossRef]
- Nie, Y.-J.; Dai, J.-W.; Zhang, X.-B. Effect of Ag Addition on Microstructure, Mechanical and Corrosion Properties of Mg–Nd–Zn–Zr Alloy for Orthopedic Application. Acta Met. Sin. 2023, 36, 295–309. [Google Scholar] [CrossRef]
- Ben Tzion-Mottye, L.; Ron, T.; Eliezer, D.; Aghion, E. The Effect of Mn on the Mechanical Properties and In Vitro Behavior of Biodegradable Zn-2%Fe Alloy. Metals 2022, 12, 1291. [Google Scholar] [CrossRef]
- Geng, X.; Jiang, J.; Zhang, X. Corrosion Behavior of Mg–xGd–1Zn–0.4Zr Alloys with Different Gd Additions for Biomedical Application. Metals 2022, 12, 1763. [Google Scholar] [CrossRef]
- Dai, J.; Dong, Q.; Nie, Y.; Jia, Y.; Chu, C.; Zhang, X. Insight into the role of Y addition in the microstructures, mechanical and corrosion properties of as-cast Mg-Gd-Y-Zn-Ca-Zr alloys. Mater. Des. 2022, 221, 110980. [Google Scholar] [CrossRef]
- Pei, X.; Wei, S.; Shi, B.; Shen, Z.; Wang, X.; Tong, Z.; Fu, T. Disintegrating fracturing ball used in ball injection sliding sleeve for staged fracturing. Pet. Explor. Dev. 2014, 41, 805–809. [Google Scholar] [CrossRef]
- Tan, W.; Li, T.; Li, S.; Fang, D.; Ding, X.; Sun, J. High strength-ductility and rapid degradation rate of as-cast Mg–Cu–Al alloys for application in fracturing balls. J. Mater. Sci. Technol. 2021, 94, 22–31. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.; Liu, X.; Peng, X.; Wang, K.; Liu, S.; Jiang, W.; Guo, S.; Pan, F. Enhanced mechanical properties and degradation rate of Mg–Ni–Y alloy by introducing LPSO phase for degradable fracturing ball applications. J. Magnes. Alloy. 2020, 8, 127–133. [Google Scholar] [CrossRef]
- Ma, K.; Wang, J.; Ren, J.; Dai, C.; Liu, S.; Peng, Y.; Pan, Y. Enhanced degradation properties of Mg-Y-Ni alloys by tailoring the LPSO morphology for fracturing tools applications. Mater. Charact. 2021, 181, 111489. [Google Scholar] [CrossRef]
- Xiao, D.H.; Geng, Z.W.; Chen, L.; Wu, Z.; Diao, H.Y.; Song, M.; Zhou, P.F. Effects of Alloying Elements on Microstructure and Properties of Magnesium Alloys for Tripling Ball. Met. Mater. Trans. A 2015, 46, 4793–4803. [Google Scholar] [CrossRef]
- Dai, J.; Nie, Y.; Zhang, X. Ambient and elevated temperature mechanical behavior of Mg–Gd–Cu–Zr alloy. Mater. Res. Express 2018, 5, 116524. [Google Scholar] [CrossRef]
- Wu, X.; Pan, F.; Cheng, R. Formation of long period stacking ordered phases in Mg–10Gd–1Zn–0.5Zr (wt.%) alloy. Mater. Charact. 2018, 147, 50–56. [Google Scholar] [CrossRef]
- Yuan, X.; Du, Y.; Dong, D.; Liu, D.; Jiang, B. Corrosion Resistance Improvement of an Extruded Mg–Gd–Y–Zn–Zr–Ca via Aging Treatment. J. Mater. Eng. Perform. 2021, 31, 2909–2917. [Google Scholar] [CrossRef]
- Niu, Y.; Hou, J.; Ning, F.; Chen, X.; Jia, Y.; Le, Q. Hot deformation behavior and processing map of Mg–2Zn–1Al–0.2RE alloy. J. Rare Earths 2020, 38, 665–675. [Google Scholar] [CrossRef]
- Niu, H.-Y.; Deng, K.-K.; Nie, K.-B.; Wang, C.-J.; Liang, W.; Wu, Y.-C. Degradation behavior of Mg–4Zn–2Ni alloy with high strength and high degradation rate. Mater. Chem. Phys. 2020, 249, 123131. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.-H.; Wang, J.; Li, Z.-H.; Xie, J.-S.; Liu, S.-J.; Guan, K.; Wu, R.-Z. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Met. Mater. 2020, 28, 30–45. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, D.; Wang, Y.; Chai, S.; Feng, J.; Luo, Y.; Hua, J.; Dai, Q.; Hu, G.; Xu, J.; et al. Microstructures, mechanical properties and degradability of Mg-2Gd-0.5(Cu/Ni) alloys: A comparison study. J. Mater. Sci. Technol. 2022, 128, 44–58. [Google Scholar] [CrossRef]
- Geng, Z.; Xiao, D.; Chen, L. Microstructure, mechanical properties, and corrosion behavior of degradable Mg–Al–Cu–Zn–Gd alloys. J. Alloys Compd. 2016, 686, 145–152. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Zhang, Z.; Yang, Q.; Guan, K.; He, Y.; Wang, R.; Zhang, H.; Qiu, X.; Wu, R. New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corros. Sci. 2022, 198, 110163. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Le, Q.; Jia, Y.; Zhou, X.; Yu, F.; Atrens, A. The role of long-period stacking ordered phase on the discharge and electrochemical behaviors of magnesium anode Mg-Zn-Y for the primary Mg-air battery. Int. J. Energy Res. 2020, 44, 8865–8876. [Google Scholar] [CrossRef]
- Nie, Y.; Dai, J.; Li, X.; Zhang, X. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures. J. Magnes. Alloy. 2021, 9, 1123–1146. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Cimpoesu, R.; Cimpoesu, N.; Popescu, O.; Vlad, M. Microstructural, Electrochemical and In Vitro Analysis of Mg-0.5Ca-xGd Biodegradable Alloys. Appl. Sci. 2021, 11, 981. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, X.; Wang, Z. Microstructure and enhanced corrosion resistance of biodegradable Mg–Gd–Cu–Zr alloy by solution treatment. Mater. Technol. 2018, 33, 301–310. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Luo, S.; Wang, N.; Wang, Y.; Chen, J.; Qin, H.; Kong, S.; Bai, T.; Lu, W.; Xiao, L.; Ma, X.; et al. Texture, microstructure and mechanical properties of an extruded Mg–10Gd–1Zn–0.4Zr alloy: Role of microstructure prior to extrusion. Mater. Sci. Eng. A 2022, 849, 143476. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, A.; Liu, H.; Sun, J.; Song, D.; Wang, C.; Yuan, Y.; Jiang, J. Multimodal Microstructure and Mechanical Properties of AZ91 Mg Alloy Prepared by Equal Channel Angular Pressing plus Aging. Metals 2018, 8, 763. [Google Scholar] [CrossRef] [Green Version]
- Egusa, D.; Abe, E. The structure of long period stacking/order Mg–Zn–RE phases with extended non-stoichiometry ranges. Acta Mater. 2012, 60, 166–178. [Google Scholar] [CrossRef]
- Kim, J.-K.; Ko, W.-S.; Sandlöbes, S.; Heidelmann, M.; Grabowski, B.; Raabe, D. The role of metastable LPSO building block clusters in phase transformations of an Mg–Y–Zn alloy. Acta Mater. 2016, 112, 171–183. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Qiao, X.G.; Zheng, M.Y.; Wu, K.; Kamado, S. Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates. Sci. Rep. 2017, 7, 43391. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, T.; Li, H.; Ma, Y.; Zhao, K.; Yang, C.; Zhang, J. Effect of trace Ni addition on microstructure, mechanical and corrosion properties of the extruded Mg–Gd–Y–Zr–Ni alloys for dissoluble fracturing tools. J. Magnes. Alloy. 2021, 9, 1632–1643. [Google Scholar] [CrossRef]
- Chen, X.; Jia, Y.; Le, Q.; Ning, S.; Li, X.; Yu, F. The interaction between in situ grain refiner and ultrasonic treatment and its influence on the mechanical properties of Mg–Sm–Al magnesium alloy. J. Mater. Res. Technol. 2020, 9, 9262–9270. [Google Scholar] [CrossRef]
- Hong, L.; Wang, R.; Zhang, X. Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults. Int. J. Miner. Met. Mater. 2022, 29, 1570–1577. [Google Scholar] [CrossRef]
- Zhang, X.; Ba, Z.; Wang, Z.; Wu, Y.; Xue, Y. Effect of LPSO structure on mechanical properties and corrosion behavior of as-extruded GZ51K magnesium alloy. Mater. Lett. 2016, 163, 250–253. [Google Scholar] [CrossRef]
- Homma, T.; Hirawatari, S.; Sunohara, H.; Kamado, S. Room and elevated temperature mechanical properties in the as-extruded Mg–Al–Ca–Mn alloys. Mater. Sci. Eng. A 2012, 539, 163–169. [Google Scholar] [CrossRef]
- Trivedi, P.; Nune, K.; Misra, R.; Goel, S.; Jayganthan, R.; Srinivasan, A. Grain refinement to submicron regime in multiaxial forged Mg–2Zn–2Gd alloy and relationship to mechanical properties. Mater. Sci. Eng. A 2016, 668, 59–65. [Google Scholar] [CrossRef]
- Garces, G.; Perez, P.; Cabeza, S.; Lin, H.; Kim, S.; Gan, W.; Adeva, P. Reverse tension/compression asymmetry of a Mg–Y–Zn alloys containing LPSO phases. Mater. Sci. Eng. A 2015, 647, 287–293. [Google Scholar] [CrossRef]
- Chi, Y.; Zhou, X.; Qiao, X.; Brokmeier, H.; Zheng, M. Tension-compression asymmetry of extruded Mg–Gd–Y–Zr alloy with a bimodal microstructure studied by in-situ synchrotron diffraction. Mater. Des. 2019, 170, 107705. [Google Scholar] [CrossRef]
- Papanastasiou, P.; Durban, D. Singular crack-tip plastic fields in Tresca and Mohr–Coulomb solids. Int. J. Solids Struct. 2018, 136–137, 250–258. [Google Scholar] [CrossRef]
- Niu, H.-Y.; Deng, K.-K.; Nie, K.-B.; Cao, F.-F.; Zhang, X.-C.; Li, W.-G. Microstructure, mechanical properties and corrosion properties of Mg–4Zn–xNi alloys for degradable fracturing ball applications. J. Alloys Compd. 2019, 787, 1290–1300. [Google Scholar] [CrossRef]
- Ding, J.; Liu, X.; Wang, Y.; Huang, W.; Wang, B.; Wei, S.; Xia, X.; Liang, Y.; Chen, X.; Pan, F.; et al. Effect of Sn Addition on Microstructure and Corrosion Behavior of As-Extruded Mg–5Zn–4Al Alloy. Materials 2019, 12, 2069. [Google Scholar] [CrossRef] [Green Version]
- Gusieva, K.; Davies, C.H.J.; Scully, J.R.; Birbilis, N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2014, 60, 169–194. [Google Scholar] [CrossRef]
- Li, C.; Xu, D.; Chen, X.-B.; Wang, B.; Wu, R.; Han, E.; Birbilis, N. Composition and microstructure dependent corrosion behaviour of Mg-Li alloys. Electrochim. Acta 2018, 260, 55–64. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, J.; Zhang, R.; Ba, Z.; Birbilis, N. Corrosion behavior of Mg–3Gd–1Zn–0.4Zr alloy with and without stacking faults. J. Magnes. Alloy. 2019, 7, 240–248. [Google Scholar] [CrossRef]
- Yin, S.; Duan, W.; Liu, W.; Wu, L.; Yu, J.; Zhao, Z.; Liu, M.; Wang, P.; Cui, J.; Zhang, Z. Influence of specific second phases on corrosion behaviors of Mg–Zn–Gd–Zr alloys. Corros. Sci. 2019, 166, 108419. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Jiang, B.; Lei, B.; Liu, W.; Song, J.; Huang, G.; Zhang, D.; Pan, F. Effects of Grain Size on the Corrosion and Discharge Behaviors of Mg–Y Binary Alloys for Mg-Air Batteries. J. Electrochem. Soc. 2020, 167, 130515. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, J.; Wang, G.; Cao, D.; Tan, L.; Misra, R.; Yang, K. Effects of ECAP extrusion on the mechanical and biodegradable properties of an extruded Mg–1.5Zn–0.5Y–0.5Zr alloy. Mater. Technol. 2020, 37, 135–142. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Zhang, C.; Zhang, B.; Zhang, T.; Li, Y.; Wu, K.; Wang, F. Role of the LPSO structure in the improvement of corrosion resistance of Mg–Gd–Zn–Zr alloys. J. Alloys Compd. 2018, 782, 648–658. [Google Scholar] [CrossRef]
- Ma, K.; Liu, S.; Dai, C.; Liu, X.; Ren, J.; Pan, Y.; Peng, Y.; Su, C.; Wang, J.; Pan, F. Effect of Ni on the microstructure, mechanical properties and corrosion behavior of MgGd1Nix alloys for fracturing ball applications. J. Mater. Sci. Technol. 2021, 91, 121–133. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, D.; Liu, W. Effect of Si addition on microstructure and properties of magnesium alloys with high Al and Zn contents. Vacuum 2017, 141, 144–151. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, D.; Zhou, P.; Liu, W.; Ma, Y.; Sun, B. Effects of rare earth yttrium on microstructure and properties of Mg–Al–Zn alloy. J. Alloys Compd. 2018, 742, 232–239. [Google Scholar] [CrossRef]
Areas | Gd | Cu | Zr | Mg |
---|---|---|---|---|
A1 | 3.95 | 0.86 | 0.83 | Balance |
B1 | 25.88 | 24.65 | 0.18 | Balance |
A2 | 4.29 | 1.58 | 0.41 | Balance |
B2 | 24.85 | 22.31 | 0.32 | Balance |
C1 | 15.06 | 8.17 | 0.48 | Balance |
Tests | Alloys | T (°C) | TYS/CYS (MPa) | UTS/UCS (MPa) | Elongation (%) |
---|---|---|---|---|---|
Tensile | As-extruded | 25 | 208.2 ± 2.1 | 228.0 ± 2.2 | 5.6 ± 1.3 |
As-extruded | 93 | 191.4 ± 1.5 | 226.0 ± 2.3 | 12.9 ± 1.2 | |
As-aged | 25 | 231.0 ± 2.4 | 254.4 ± 2.2 | 10.4 ± 1.4 | |
As-aged | 93 | 203.8 ± 2.2 | 234.3 ± 2.1 | 11.1 ± 1.1 | |
Compression | As-extruded | 93 | 194.3 ± 1.8 | 374.5 ± 13.8 | 19.7 ± 1.3 |
As-aged | 93 | 193.3 ± 2.9 | 336.1 ± 16.8 | 16.9 ± 0.9 |
Alloy | Ecorr (V) | Icorr (A/cm2) |
---|---|---|
As-extruded | −1.45 | 6.3 × 10−5 |
As-aged | −1.50 | 1.2 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Geng, X.; Zhang, X. Mechanical and Corrosion Properties of Mg–Gd–Cu–Zr Alloy for Degradable Fracturing Ball Applications. Metals 2023, 13, 446. https://doi.org/10.3390/met13030446
Jiang J, Geng X, Zhang X. Mechanical and Corrosion Properties of Mg–Gd–Cu–Zr Alloy for Degradable Fracturing Ball Applications. Metals. 2023; 13(3):446. https://doi.org/10.3390/met13030446
Chicago/Turabian StyleJiang, Jiahao, Xue Geng, and Xiaobo Zhang. 2023. "Mechanical and Corrosion Properties of Mg–Gd–Cu–Zr Alloy for Degradable Fracturing Ball Applications" Metals 13, no. 3: 446. https://doi.org/10.3390/met13030446
APA StyleJiang, J., Geng, X., & Zhang, X. (2023). Mechanical and Corrosion Properties of Mg–Gd–Cu–Zr Alloy for Degradable Fracturing Ball Applications. Metals, 13(3), 446. https://doi.org/10.3390/met13030446