The Impact of the Minimum Ductility Requirement in Automotive Castings on the Carbon Dioxide Footprint throughout the Useful Life of an Electric Car
Abstract
:1. Introduction
2. Background
3. Ductility and Crashworthiness
4. Ductility and Fatigue Performance
5. The Environmental Impact of Elongation Requirements
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Visnic, B. Tesla Casts a New Strategy for Lightweight Structures. Automot. Eng. SAE Int. 2020, 12–13. [Google Scholar]
- Carney, D. Tesla’s Switch to Giga Press Die Castings for Model 3 Eliminates 370 Parts, Design News; 2021; Available online: https://www.designnews.com/automotive-engineering/teslas-switch-giga-press-die-castings-model-3-eliminates-370-parts (accessed on 27 February 2023).
- Serrenho, A.; Norman, J.; Allwood, J. The impact of reducing car weight on global emissions: The future fleet in Great Britain. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160364. [Google Scholar] [CrossRef] [Green Version]
- Jarfors, A.; Jansson, P. Selecting Cast Alloy Alloying Elements Suitable for a Circular Society. Sustainability 2022, 14, 6584. [Google Scholar] [CrossRef]
- Cecchel, S.; Cornacchia, G.; Panvini, A. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component. JOM 2016, 68, 2443–2448. [Google Scholar] [CrossRef]
- Erzi, E.; Tiryakioğlu, M. A simple procedure to determine incoming quality of aluminum alloy ingots and its application to A356 alloy ingots. Int. J. Met. 2020, 14, 999–1004. [Google Scholar] [CrossRef]
- Campbell, J. Entrainment defects. Mater. Sci. Technol. 2006, 22, 127–145. [Google Scholar] [CrossRef]
- Courtney, T. Mechanical Behavior of Materials; Waveland Press: Long Grove, IL, USA, 2005. [Google Scholar]
- NAlexopoulos, D.; Tiryakioğlu, M. Relationship between Fracture Toughness and Tensile Properties of A357 Cast Aluminum Alloy. Metall. Mater. Trans. A 2009, 40, 702–716. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Staley, J.; Campbell, J. The effect of structural integrity on the tensile deformation characteristics of A206-T71 alloy castings. Mater. Sci. Eng. A 2008, 487, 383–387. [Google Scholar] [CrossRef]
- Tiryakioglu, M.; Campbell, J. Evaluation of structural integrity in cast Al-7% Si-Mg alloys via toughness. In Mechanisms and Mechanics of Fracture: Symposium in Honor of Prof. JF Knott; TMS: Warrandale, PA, USA, 2002; pp. 111–115. [Google Scholar]
- Tiryakioglu, M.; Campbell, J. Ductility, structural quality, and fracture toughness of Al–Cu–Mg–Ag (A201) alloy castings. Mater. Sci. Technol. 2009, 25, 784–789. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Campbell, J.; Alexopoulos, N. On the ductility of cast Al-7 pct Si-Mg alloys. Metall. Mater. Trans. A 2009, 40, 1000–1007. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Campbell, J.; Alexopoulos, N. On the ductility potential of cast Al–Cu–Mg (206) alloys. Mater. Sci. Eng. A 2009, 506, 23–26. [Google Scholar] [CrossRef]
- Tiryakioglu, M.; Campbell, J.; Alexopoulos, N. Quality Indices for Aluminum Alloy Castings: A Critical Review. Metall. Mater. Trans. B 2009, 40, 802–811. [Google Scholar] [CrossRef]
- Tiryakioğlu, M.; Campbell, J. Quality index for aluminum alloy castings. Int. J. Met. 2014, 8, 39–42. [Google Scholar] [CrossRef]
- Campbell, J.; Tiryakioğlu, M. Fatigue Failure in Engineered Components and How It Can Be Eliminated: Case Studies on the Influence of Bifilms. Metals 2022, 12, 1320. [Google Scholar] [CrossRef]
- Jr, J.S.; Tiryakioğlu, M.; Campbell, J. The effect of hot isostatic pressing (HIP) on the fatigue life of A206-T71 aluminum castings. Mater. Sci. Eng. A 2007, 465, 136–145. [Google Scholar]
- Staley, J.T., Jr.; Tiryakioğlu, M.; Campbell, J. The effect of increased HIP temperatures on bifilms and tensile properties of A206-T71 aluminum castings. Mater. Sci. Eng. A 2007, 460–461, 324–334. [Google Scholar] [CrossRef]
- Fang, H.; Solanki, K.; Horstemeyer, M. Energy-based crashworthiness optimization for multiple vehicle impacts. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; pp. 11–16. [Google Scholar]
- Zhu, G.; Sun, G.; Yu, H.; Li, S.; Li, Q. Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading. Int. J. Mech. Sci. 2018, 135, 458–483. [Google Scholar] [CrossRef]
- Esin, A. The microplastic strain energy criterion applied to fatigue. J. Basic Eng. 1968, 90, 28–36. [Google Scholar] [CrossRef]
- Esin, A.; Jones, W. A mathematical model for generating microplastic hysteresis loops. J. Strain Anal. Eng. Des. 1968, 3, 50–56. [Google Scholar] [CrossRef]
- Esin, A.; Jones, W. A theory of fatigue based on the microstructural accumulation of strain energy. Nucl. Eng. Des. 1966, 4, 292–298. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Y.-Y.; Li, C.-W.; Zhang, Z.-P. Fatigue life prediction for metals using an improved strain energy density model. Mech. Adv. Mater. Struct. 2020, 27, 579–585. [Google Scholar] [CrossRef]
- Aigner, R.; Garb, C.; Leitner, M.; Stoschka, M.; Grün, F. Application of a √ area -Approach for Fatigue Assessment of Cast Aluminum Alloys at Elevated Temperature. Metals 2018, 8, 1033. [Google Scholar] [CrossRef] [Green Version]
- Garb, C.; Leitner, M.; Grün, F. Application of √area-concept to assess fatigue strength of AlSi7Cu0.5Mg casted components. Eng. Fract. Mech. 2017, 185, 61–71. [Google Scholar] [CrossRef]
- Tiryakioğlu, M. On the relationship between elongation and fatigue life in A206-T71 aluminum castings. Mater. Sci. Eng. A 2014, 601, 116–122. [Google Scholar] [CrossRef]
- Özdeş, H.; Tiryakioğlu, M. On estimating high-cycle fatigue life of cast Al-Si-Mg-(Cu) alloys from tensile test results. Mater. Sci. Eng. A 2017, 688, 9–15. [Google Scholar] [CrossRef]
- Özdeş, H.; Tiryakioğlu, M. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings. J. Mater. Eng. Perform. 2017, 26, 736–743. [Google Scholar] [CrossRef]
- Basquin, O. The exponential law of endurance tests. Proc. Astm. 1910, 10, 625–630. [Google Scholar]
- Kun, F.; Carmona, H.; Andrade, J., Jr.; Herrmann, H. Universality behind Basquin’s Law of Fatigue. Phys. Rev. Lett. 2008, 100, 094301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdeş, H.; Tiryakioğlu, M. Walker Parameter for Mean Stress Correction in Fatigue Testing of Al-7%Si-Mg Alloy Castings. Materials 2017, 10, 1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Aluminium Association. Aluminium in Cars: The Light-Weighting Potential; European Aluminium Association: Brussels, Belgium, 2012. [Google Scholar]
- Energy Consumption of Full Electric Vehicles. 2022. Available online: https://ev-database.org/cheatsheet/energy-consumption-electric-car (accessed on 27 February 2023).
- Tiseo, I. Carbon Intensity of the Power Sector in the European Union in 2021, by Country. 2021. Available online: https://www.statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/ (accessed on 2 February 2023).
- Available online: https://www.eia.gov/tools/faqs/faq.php?id=74&t=11 (accessed on 2 February 2023).
- Harlow, J.; Ma, X.; Li, J.; Logan, E.; Liu, Y.; Zhang, N.; Ma, L.; Glazier, S.; Cormier, M.; Genovese, M.; et al. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. J. Electrochem. Soc. 2019, 166, A3031. [Google Scholar] [CrossRef]
- Morris, J. Tesla Researcher Demonstrates 100-Year, 4-Million-Mile Battery. Forbes 2022. Available online: https://www.forbes.com/sites/jamesmorris/2022/05/28/tesla-researcher-demonstrates-100-year-4-million-mile-battery/?sh=5abdfbe972f4 (accessed on 2 February 2023).
- Reid, C. Electric Car Batteries Lasting Longer Than Predicted Delays Recycling Programs. 2022. Available online: https://www.forbes.com/sites/carltonreid/2022/08/01/electric-car-batteries-lasting-longer-than-predicted-delays-recycling-programs/?sh=44e020295332 (accessed on 20 February 2023).
- The Aluminium Association. The Environmental Footpring of Semi-Fabricated Aluminum Products in North America: A Life Cycle Assessment Report; The Aluminium Association: Arlington, VA, USA, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiryakioğlu, M.; Jarfors, A.E.W.; Leitner, M. The Impact of the Minimum Ductility Requirement in Automotive Castings on the Carbon Dioxide Footprint throughout the Useful Life of an Electric Car. Metals 2023, 13, 513. https://doi.org/10.3390/met13030513
Tiryakioğlu M, Jarfors AEW, Leitner M. The Impact of the Minimum Ductility Requirement in Automotive Castings on the Carbon Dioxide Footprint throughout the Useful Life of an Electric Car. Metals. 2023; 13(3):513. https://doi.org/10.3390/met13030513
Chicago/Turabian StyleTiryakioğlu, Murat, Anders E. W. Jarfors, and Martin Leitner. 2023. "The Impact of the Minimum Ductility Requirement in Automotive Castings on the Carbon Dioxide Footprint throughout the Useful Life of an Electric Car" Metals 13, no. 3: 513. https://doi.org/10.3390/met13030513
APA StyleTiryakioğlu, M., Jarfors, A. E. W., & Leitner, M. (2023). The Impact of the Minimum Ductility Requirement in Automotive Castings on the Carbon Dioxide Footprint throughout the Useful Life of an Electric Car. Metals, 13(3), 513. https://doi.org/10.3390/met13030513