Laser-Induced Iridescent Steel Surfaces with Moderate Reflectance
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Surface Structures and Coloration Appearance
3.2. Optical Properties
3.3. Coloration Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Lin, W.; Hong, M. Surface coloring by laser irradiation of solid substrates. APL Photonics 2019, 4, 051101. [Google Scholar] [CrossRef] [Green Version]
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Chen, Y.; Newkirk, J.W.; Liou, F. Synthesizing Ti–Ni alloy composite coating on Ti–6Al–4V surface from laser surface modification. Metals 2023, 13, 243. [Google Scholar] [CrossRef]
- Ruzankina, J.S.; Parfenov, V.A.; Vasiliev, O.S. Anti-corrosion prevention of carbon steel by means of laser treatment. Laser Phys. 2018, 29, 015203. [Google Scholar] [CrossRef]
- Yuan, G.; Liu, Y.; Ngo, C.-V.; Guo, C. Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing. Opt. Express 2020, 28, 35636–35650. [Google Scholar] [CrossRef]
- Liu, M.; Li, M.-T.; Xu, S.; Yang, H.; Sun, H.-B. Bioinspired superhydrophobic surfaces via laser-structuring. Front. Chem. 2020, 8, 835. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, Y.; Lin, W.; Gu, X. Enhanced mechanical properties and biocompatibility of Mg-Gd-Ca alloy by laser surface processing. Surf. Coat. Tech. 2019, 362, 176–184. [Google Scholar] [CrossRef]
- Guay, J.-M.; Lesina, A.C.; Côté, G.; Charron, M.; Poitras, D.; Ramunno, L.; Berini, P.; Weck, A. Laser-induced plasmonic colours on metals. Nat. Commun. 2017, 8, 16095. [Google Scholar] [CrossRef]
- Andreeva, Y.M.; Luong, V.C.; Lutoshina, D.S.; Medvedev, O.S.; Mikhailovskii, V.Y.; Moskvin, M.K.; Odintsova, G.V.; Romanov, V.V.; Shchedrina, N.N.; Veiko, V.P. Laser coloration of metals in visual art and design. Opt. Mater. Express 2019, 9, 1310–1319. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, X.; Huang, Z.; Li, T.; Zhang, M.; Czajkowski, J.; Fabritius, T.; Huttula, M.; Cao, W. Nanosecond laser coloration on stainless steel surface. Sci. Rep. 2017, 7, 7092. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, Q.; Hou, Y.; Cheng, Z.; Xia, T.; Cao, S.; Wang, P. Color visual art creation on metals via multifunctional laser paintbrush. Opt. Laser Technol. 2023, 159, 109040. [Google Scholar] [CrossRef]
- Veiko, V.P.; Andreeva, Y.; Cuong, L.V.; Lutoshina, D.; Polyakov, D.; Sinev, D.; Mikhailovskii, V.; Kolobov, Y.R.; Odintsova, G. Laser paintbrush as a tool for modern art. Optica 2021, 8, 577–585. [Google Scholar] [CrossRef]
- Taveira, L.V.; Kikuti, E.; Bocchi, N.; Dick, L.F. Microcharacterization of colored films formed on AISI 304 by different electrochemical methods. J. Electrochem. Soc. 2006, 153, B411–B416. [Google Scholar] [CrossRef]
- Shi, X.; Huang, Z.; Laakso, M.J.; Niklaus, F.; Sliz, R.; Fabritius, T.; Somani, M.; Nyo, T.; Wang, X.; Zhang, M.; et al. Quantitative assessment of structural and compositional colors induced by femtosecond laser: A case study on 301LN stainless steel surface. Appl. Surf. Sci. 2019, 484, 655–662. [Google Scholar] [CrossRef]
- Garcell, E.M.; Singh, S.C.; Li, H.; Wang, B.; Jalil, S.A.; Guo, C. Comparative study of femtosecond laser-induced structural colorization in water and air. Nanoscale Adv. 2020, 2, 2958–2967. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Liu, M.; Yang, D.; Li, F. A review of effects of femtosecond laser parameters on metal surface properties. Coatings 2022, 12, 1596. [Google Scholar] [CrossRef]
- Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of materials: A review. Adv. Opt. Photonics 2015, 7, 684–711. [Google Scholar] [CrossRef]
- Yin, K.; Wang, C.; Duan, J.; Guo, C. Femtosecond laser-induced periodic surface structural formation on sapphire with nanolayered gold coating. Appl. Phys. A 2016, 122, 834. [Google Scholar] [CrossRef]
- Luo, Z.; Duan, J.; Guo, C. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt. Lett. 2017, 42, 2358–2361. [Google Scholar] [CrossRef]
- Guo, T.; Liu, Z.; Jin, Y.; Wang, N.; Zhang, Z.; He, S. Large-scale panchromatic structural color manipulation via thermal trimming. Adv. Opt. Mater. 2021, 10, 2101546. [Google Scholar] [CrossRef]
- Adams, C.A.; Fernández-Juricic, E.; Bayne, E.M.; St. Clair, C.C. Effects of artificial light on bird movement and distribution: A systematic map. Environ. Evid. 2021, 10, 37. [Google Scholar] [CrossRef]
- Kowalska, J. Coloured light pollution in the urban environment. Photonics Lett. Pol. 2019, 11, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Pietroy, D.; Maio, Y.D.; Moine, B.; Baubeau, E.; Audouard, E. Femtosecond laser volume ablation rate and threshold measurements by differential weighing. Opt. Express 2012, 20, 29900–29908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulbrich, D.; Kowalczyk, J.; Jósko, M.; Sawczuk, W.; Chudyk, P. Assessment of Selected Properties of Varnish Coating of Motor Vehicles. Coatings 2021, 11, 1320. [Google Scholar] [CrossRef]
- Hodgson, S.D.; Waugh, D.G.; Gillett, A.; Lawrence, J. High speed CO2 laser surface modification of iron/cobalt co-doped boroaluminosilicate glass and the impact on surface roughness, gloss and wettability. Laser Phys. Lett. 2016, 13, 076102. [Google Scholar] [CrossRef]
- Rohloff, M.; Das, S.K.; Höhm, S.; Grunwald, R.; Rosenfeld, A.; Krüger, J.; Bonse, J. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences. J. Appl. Phys. 2011, 110, 014910. [Google Scholar] [CrossRef]
- Gnilitskyi, I.; Gruzdev, V.; Bulgakova, N.M.; Mocek, T.; Orazi, L. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses. Appl. Phys. Lett. 2016, 109, 143101. [Google Scholar] [CrossRef]
- Cucerca, S.; Didyk, P.; Seidel, H.-P.; Babaei, V. Computational image marking on metals via laser induced heating. ACM Trans. Graph. 2020, 39, 70. [Google Scholar] [CrossRef]
- Biagioni, C.; Marco, P. The systematics of the spinel-type minerals: An overview. Am. Mineral. 2014, 99, 1254–1264. [Google Scholar] [CrossRef]
- Torrent, J.; Barrón, V. Diffuse reflectance spectroscopy of iron oxides. Encycl. Surf. Colloid Sci. 2002, 1, 1438–1446. [Google Scholar]
- Color-Name. Available online: https://www.color-name.com/ (accessed on 1 February 2023).
Samples | Laser Wavelength (nm) | Fluency (J/cm2) | Pulse Pitch (μm) |
---|---|---|---|
Sample 1 | 1040 | 13.22 | 3.2 |
Sample 2 | 1040 | 6.25 | 3.2 |
Sample 3 | 520 | 13.22 | 2.2 |
Sample 4 | 520 | 6.25 | 3.2 |
Valence States | Samples | Components | Binding Energy (eV) | FWHM (eV) | Normalized Atomic Percentage (%) |
---|---|---|---|---|---|
Fe 2p | Sample 1 | Fe | 706.88 | 1.25 | 1.23 |
Spinel-Fe | 709.62 | 2.88 | 40.64 | ||
Fe2O3 | 712.40 | 2.88 | 16.70 | ||
Spinel-Fe, sat | 715.17 | 2.88 | 13.81 | ||
Fe2O3, sat | 718.84 | 2.88 | 9.22 | ||
Sample 2 | Fe | 706.88 | 1.25 | 2.70 | |
Spinel-Fe | 709.62 | 2.88 | 41.36 | ||
Fe2O3 | 712.40 | 2.88 | 15.34 | ||
Spinel-Fe, sat | 715.17 | 2.88 | 13.79 | ||
Fe2O3, sat | 718.84 | 2.88 | 9.34 | ||
Cr 2p | Sample 1 | Cr2O3 | 575.93 | 1.68 | 7.56 |
Spinel-Cr | 577.15 | 1.68 | 7.99 | ||
Spinel-Cr, sat | 578.90 | 1.68 | 2.86 | ||
Sample 2 | Cr2O3 | 575.81 | 1.68 | 8.11 | |
Spinel-Cr | 577.15 | 1.68 | 6.93 | ||
Spinel-Cr, sat | 578.90 | 1.68 | 2.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Huang, Z.; Shi, X. Laser-Induced Iridescent Steel Surfaces with Moderate Reflectance. Metals 2023, 13, 545. https://doi.org/10.3390/met13030545
Wang X, Huang Z, Shi X. Laser-Induced Iridescent Steel Surfaces with Moderate Reflectance. Metals. 2023; 13(3):545. https://doi.org/10.3390/met13030545
Chicago/Turabian StyleWang, Xuyang, Zhongjia Huang, and Xinying Shi. 2023. "Laser-Induced Iridescent Steel Surfaces with Moderate Reflectance" Metals 13, no. 3: 545. https://doi.org/10.3390/met13030545
APA StyleWang, X., Huang, Z., & Shi, X. (2023). Laser-Induced Iridescent Steel Surfaces with Moderate Reflectance. Metals, 13(3), 545. https://doi.org/10.3390/met13030545