Stress Corrosion Cracking Mechanisms of UNS S32205 Duplex Stainless Steel in Carbonated Solution Induced by Chlorides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Testing Method and Environment
2.3. Characterization Techniques
3. Results
3.1. Microstructure Characterization
3.2. Slow Strain Rate Test (SSRT)
3.3. Linear Polarization Resistance (LPR)
3.4. Electrochemical Impedance Spectroscopy (EIS)
3.5. Fractographic Study
4. Discussion
4.1. Crack Propagation Rate
4.2. Electrochemical Impedance Spectroscopy (EIS)
4.3. Energy-Dispersive X-ray Spectroscopy (EDX)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Farias Azevedo, C.R.; Boschetti Pereira, H.; Wolynec, S.; Padilha, A.F. An overview of the recurrent failures of duplex stainless steels. Eng. Fail. Anal. 2019, 97, 161–188. [Google Scholar] [CrossRef]
- Gunn, R. Duplex Stainless Steels: Microstructure, Properties and Applications; Woodhead Publishing: Sawston, UK, 1997; ISBN 1855733188. [Google Scholar]
- Yang, X.; Shao, J.; Liu, Z.; Zhang, D.; Cui, L.; Du, C.; Li, X. Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria. Corros. Sci. 2020, 173, 108746. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chen, M.S. Stress corrosion cracking behavior of 2205 duplex stainless steel in concentrated NaCl solution. Corros. Sci. 2000, 42, 545–559. [Google Scholar] [CrossRef]
- Biezma, M.V.; Martin, U.; Linhardt, P.; Ress, J.; Rodríguez, C.; Bastidas, D.M. Non-destructive techniques for the detection of sigma phase in duplex stainless steel: A comprehensive review. Eng. Fail. Anal. 2021, 122, 105227. [Google Scholar] [CrossRef]
- Okayasu, M.; Fujiwara, T. Effects of microstructural characteristics on the hydrogen embrittlement characteristics of austenitic, ferritic, and γ–α duplex stainless steels. Mater. Sci. Eng. A 2021, 807, 140851. [Google Scholar] [CrossRef]
- Örnek, C.; Davut, K.; Kocabaş, M.; Bayatlı, A.; Ürgen, M. Understanding corrosion morphology of duplex stainless steel wire in chloride electrolyte. Corros. Mater. Degrad. 2021, 2, 397–411. [Google Scholar] [CrossRef]
- Tsai, W.-T.T.; Chou, S.-L.L. Environmentally assisted cracking behavior of duplex stainless steel in concentrated sodium chloride solution. Corros. Sci. 2000, 42, 1741–1762. [Google Scholar] [CrossRef]
- Sofia Hazarabedian, M.; Viereckl, A.; Quadir, Z.; Leadbeater, G.; Golovanevskiy, V.; Erdal, S.; Georgeson, P.; Iannuzzi, M.; So, M.; Viereckl, A.; et al. Hydrogen-induced stress cracking of swaged super duplex stainless steel subsea components. Corrosion 2019, 75, 824–838. [Google Scholar] [CrossRef] [Green Version]
- Örnek, C.; Léonard, F.; McDonald, S.A.; Prajapati, A.; Withers, P.J.; Engelberg, D.L. Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires. NPJ Mater. Degrad. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Reccagni, P.; Guilherme, L.H.; Lu, Q.; Gittos, M.F.; Engelberg, D.L. Reduction of austenite-ferrite galvanic activity in the heat-affected zone of a Gleeble-simulated grade 2205 duplex stainless steel weld. Corros. Sci. 2019, 161, 108198. [Google Scholar] [CrossRef]
- Luu, W.; Liu, P.; Wu, J. Hydrogen transport and degradation of a commercial duplex stainless steel. Corros. Sci. 2002, 44, 1783–1791. [Google Scholar] [CrossRef]
- Martínez-Pañeda, E.; Harris, Z.D.; Fuentes-Alonso, S.; Scully, J.R.; Burns, J.T. On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility. Corros. Sci. 2020, 163, 108291. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, A.; Itoh, G. Tensile properties of an electrolytically hydrogen charged duplex stainless steel affected by strain rate. ISIJ Int. 2018, 58, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Martin, U.; Bastidas, D.M. Stress corrosion cracking failure analysis of aisi 1018 carbon steel reinforcing bars in carbonated and chloride contaminated environment. Eng. Fail. Anal. 2023, 146, 107159. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Dong, C.F.; Li, X.G.; Zhi, Q.; Cheng, Y.F. Stress corrosion cracking of 2205 duplex stainless steel in H2S–CO2 environment. J. Mater. Sci. 2009, 44, 4228–4234. [Google Scholar] [CrossRef]
- Bertolini, L.; Bolzoni, F.; Pastore, T.; Pedeferri, P. Behaviour of stainless steel in simulated concrete pore solution. Br. Corros. J. 1996, 31, 218–222. [Google Scholar] [CrossRef]
- Moser, R.D.; Singh, P.M.; Kahn, L.F.; Kurtis, K.E. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions. Corros. Sci. 2012, 57, 241–253. [Google Scholar] [CrossRef]
- ASTM G129-21; Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Hurley, M.F.; Scully, J.R. Threshold chloride concentrations of selected corrosion-resistant rebar materials compared to carbon steel. Corrosion 2006, 62, 892–904. [Google Scholar] [CrossRef]
- ASTM G59-97; Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- Sandim, M.J.R.; Souza Filho, I.R.; Mota, C.F.G.S.; Zilnyk, K.D.; Sandim, H.R.Z. Microstructural and magnetic characterization of a lean duplex steel: Strain-induced martensite formation and austenite reversion. J. Magn. Magn. Mater. 2021, 517, 167370. [Google Scholar] [CrossRef]
- Knyazeva, M.; Pohl, M. Duplex Steels: Part I: Genesis, Formation, Structure. Metallogr. Microstruct. Anal. 2013, 2, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Hammood, A.S. Biomineralization of 2304 duplex stainless steel with surface modification by electrophoretic deposition. J. Appl. Biomater. Funct. Mater. 2020, 18, 228080001989621. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Hua, G.; Yang, B.; Lu, H.; Qiao, L.; Yan, X.; Li, D. Electron work functions of ferrite and austenite phases in a duplex stainless steel and their adhesive forces with AFM silicon probe. Sci. Rep. 2016, 6, 20660. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fu, H.; Du, D.; Zhou, Z.; Zhang, A.; Su, C.; Ma, K. The comparison of pKa determination between carbonic acid and formic acid and its application to prediction of the hydration numbers. Chem. Phys. Lett. 2008, 460, 339–342. [Google Scholar] [CrossRef]
- Davies, D.H.; Burstein, G.T. The effects of bicarbonate on the corrosion and passivation of iron. Corrosion 1980, 36, 416–422. [Google Scholar] [CrossRef]
- Stefánsson, A. Iron(III) hydrolysis and solubility at 25 °C. Environ. Sci. Technol. 2007, 41, 6117–6123. [Google Scholar] [CrossRef]
- Singley, J.E.; Black, A.P. Hydrolysis products of iron (III). J. Am. Water Work. Assoc. 1967, 59, 1549–1564. [Google Scholar] [CrossRef]
- Briz, E.; Biezma, M.V.; Bastidas, D.M. Stress corrosion cracking of new 2001 lean–duplex stainless steel reinforcements in chloride contained concrete pore solution: An electrochemical study. Constr. Build. Mater. 2018, 192, 1–8. [Google Scholar] [CrossRef]
- Babu, U.R.; Kondraivendhan, B. Effect of IR drop on reinforced concrete corrosion measurements. IOP Conf. Ser. Mater. Sci. Eng. 2020, 829, 012015. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Ni, H.; Hao, W.; Man, C.; Chen, S.; Wang, X.; Liu, Z.; Li, X. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates. Corros. Sci. 2017, 118, 31–48. [Google Scholar] [CrossRef]
- Bastidas, D.M.; Fernández-Jiménez, A.; Palomo, A.; González, J.A. A study on the passive state stability of steel embedded in activated fly ash mortars. Corros. Sci. 2008, 50, 1058–1065. [Google Scholar] [CrossRef]
- Ohta, K.; Ishida, H. Comparison among several numerical integration methods for Kramers-Kronig transformation. Appl. Spectrosc. 1988, 42, 952–957. [Google Scholar] [CrossRef]
- Ress, J.; Martin, U.; Bosch, J.; Bastidas, D.M. pH-Triggered release of NaNO2 corrosion inhibitors from novel colophony microcapsules in simulated concrete pore solution. ACS Appl. Mater. Interfaces 2020, 12, 46686–46700. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, E.M.; Raducanu, D.; Vintila, A.N.; Alturaihi, S.S.; Serban, N.; Berbecaru, A.C.; Cojocaru, V.D. Influence of ageing treatment on microstructural and mechanical properties of a solution treated UNS S32750/EN 1.4410/F53 super duplex stainless steel (SDSS) alloy. J. Mater. Res. Technol. 2020, 9, 8592–8605. [Google Scholar] [CrossRef]
- Hilders, O.; Zambrano, N. The effect of aging on impact toughness and fracture surface fractal dimension in SAF 2507 super duplex stainless steel. J. Microsc. Ultrastruct. 2014, 2, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Y.; Wang, X. In situ observation of the deformation and fracture behaviors of long-term thermally aged cast duplex stainless steels. Metals 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, S.-L.; Zhang, H.-L.; Wang, X.-T.; Wang, Y.-L. Characterization of impact deformation behavior of a thermally aged duplex stainless steel by EBSD. Acta Metall. Sin. English Lett. 2018, 31, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Topolska, S.; Labanowski, J. Impact-toughness investigations of duplex stainless steels. Mater. Tehnol. 2015, 49, 481–486. [Google Scholar] [CrossRef]
- Martin Diaz, U.; Birbilis, N.; Macdonald, D.D.; Bastidas, D.M. Passivity breakdown and crack propagation mechanisms of lean duplex (UNS S32001) stainless steel reinforcement in high alkaline solution under stress corrosion cracking. Corrosion 2023, 79, 4229. [Google Scholar] [CrossRef]
- Park, H.; Moon, B.; Moon, Y.; Kang, N. Hydrogen stress cracking behaviour in dissimilar welded joints of duplex stainless steel and carbon steel. Metals 2021, 11, 1039. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Urquidi-MacDonald, M. A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments. Corros. Sci. 1991, 32, 51–81. [Google Scholar] [CrossRef]
- Filippi, S.; Lazzarin, P.; Tovo, R. Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int. J. Solids Struct. 2002, 39, 4543–4565. [Google Scholar] [CrossRef]
- Lazzarin, P.; Filippi, S. A generalized stress intensity factor to be applied to rounded V-shaped notches. Int. J. Solids Struct. 2006, 43, 2461–2478. [Google Scholar] [CrossRef] [Green Version]
- Weng, S.; Huang, Y.; Lin, S.; Xuan, F. Stress corrosion crack propagation affected by microstructures for nuclear steam turbine rotor steels in the simulated environment. J. Mater. Res. Technol. 2022, 17, 725–742. [Google Scholar] [CrossRef]
- Galakhova, A.; Prattes, K.; Mori, G. High-temperature high-pressure SCC testing of corrosion-resistant alloys. Mater. Corros. 2021, 72, 1831–1842. [Google Scholar] [CrossRef]
- Alwin, B.; Lakshminarayanan, A.K.; Vasudevan, M.; Vasantharaja, P. Assessment of stress corrosion cracking resistance of activated tungsten inert gas-welded duplex stainless steel joints. J. Mater. Eng. Perform. 2017, 26, 5825–5836. [Google Scholar] [CrossRef]
- Liang, X.Z.; Zhao, G.-H.; Dodge, M.F.; Lee, T.L.; Dong, H.B.; Rivera-Díaz-del-Castillo, P.E.J. Hydrogen embrittlement in super duplex stainless steels. Materialia 2020, 9, 100524. [Google Scholar] [CrossRef]
- Parkins, R.N.; Zhou, S. The stress corrosion cracking of C-Mn steel in CO2-HCO3 −CO32 − solutions. II: Electrochemical and other data. Corros. Sci. 1997, 39, 175–191. [Google Scholar] [CrossRef]
- Martin, U.; Bosch, J.; Ress, J.; Bastidas, D.M. Long-term stability and electronic properties of passive film of lean-duplex stainless steel reinforcements in chloride containing mortar. Constr. Build. Mater. 2021, 291, 123319. [Google Scholar] [CrossRef]
- Montemor, M.; Simões, A.M.; Ferreira, M.G. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cem. Concr. Compos. 2003, 25, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Bastidas, D.M. Interpretation of impedance data for porous electrodes and diffusion processes. Corrosion 2007, 63, 515–521. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Technical Note: Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 2001, 57, 747–748. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Hakiki, N.B.; Boudin, S.; Rondot, B.; Da Cunha Belo, M. The electronic structure of passive films formed on stainless steels. Corros. Sci. 1995, 37, 1809–1822. [Google Scholar] [CrossRef]
- Fajardo, S.; Bastidas, D.M.; Criado, M.; Bastidas, J.M. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides. Electrochim. Acta 2014, 129, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Bosch, R.-W. Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature. Corros. Sci. 2005, 47, 125–143. [Google Scholar] [CrossRef]
- Lou, X.; Singh, P.M. Phase angle analysis for stress corrosion cracking of carbon steel in fuel-grade ethanol: Experiments and simulation. Electrochim. Acta 2011, 56, 1835–1847. [Google Scholar] [CrossRef]
- Naskar, A.; Bhattacharyya, M.; Raja, K.S.; Charit, I.; Darsell, J.; Jana, S. Pitting behavior of friction stir repair-welded 304L stainless steel in 3.5% NaCl solution at room temperature: Role of grain and defect structures. SN Appl. Sci. 2020, 2, 2164. [Google Scholar] [CrossRef]
- Fedorov, A.; Zhitenev, A.; Karasev, V.; Alkhimenko, A.; Kovalev, P. Development of a methodology for the quality management of duplex stainless steels. Materials 2022, 15, 6008. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, C.; Cheng, G.; Li, F. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements. Mater. Today Proc. 2015, 2, S300–S305. [Google Scholar] [CrossRef]
- Todoshchenko, O.; Yagodzinskyy, Y.; Yagodzinska, V.; Saukkonen, T.; Hänninen, H. Hydrogen effects on fracture of high-strength steels with different micro-alloying. Corros. Rev. 2015, 33, 515–527. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Q.; Watanabe, Y.; Shoji, T.; Cao, F. A critical review of the recent advances in inclusion-triggered localized corrosion in steel. NPJ Mater. Degrad. 2022, 6, 81. [Google Scholar] [CrossRef]
- Kiviö, M.; Holappa, L.; Iung, T. Addition of dispersoid titanium oxide inclusions in steel and their influence on grain refinement. Metall. Mater. Trans. B 2010, 41, 1194–1204. [Google Scholar] [CrossRef]
- Rezaei, H.A.; Ghazani, M.S.; Eghbali, B. Effect of post deformation annealing on the microstructure and mechanical properties of cold rolled AISI 321 austenitic stainless steel. Mater. Sci. Eng. A 2018, 736, 364–374. [Google Scholar] [CrossRef]
- Ghazani, M.S.; Eghbali, B. Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel. Mater. Sci. Eng. A 2018, 730, 380–390. [Google Scholar] [CrossRef]
Element | C | Cr | Mn | Ni | Mo | N | Si | Co | Ti |
---|---|---|---|---|---|---|---|---|---|
Content (wt.%) | 0.017 | 22.76 | 1.57 | 4.64 | 3.21 | 0.171 | 0.34 | 0.17 | 0.004 |
[Cl−] wt.% | σy MPa | σUTS MPa | εUTS % | εf % |
---|---|---|---|---|
SCPS (pH 12.6) | ||||
0 | 510 | 717 | 15.9 | 21.0 |
4 | 463 | 562 | 12.8 | 17.6 |
8 | 407 | 480 | 9.9 | 11.9 |
CBS (pH 9.1) | ||||
0 | 512 | 716 | 11.7 | 15.1 |
4 | 461 | 559 | 8.9 | 11.5 |
8 | 406 | 485 | 7.7 | 10.5 |
[Cl–] wt.% | Load Percentage | Rs | Rfilm | Yfilm | nfilm | Rct | Ydl | ndl | χ2 (*) |
---|---|---|---|---|---|---|---|---|---|
Ω cm2 | Ω cm2 | S cm−2 sn,film | Ω cm2 | S cm−2 sn,dl | |||||
SCPS (pH 12.6) | |||||||||
0 | Preload | 3.82 | 8.75 × 102 | 1.26 × 10−6 | 0.81 | 4.29 × 105 | 2.19 × 10−6 | 0.84 | 8.87 × 10−4 |
Yield | 3.61 | 4.25 × 103 | 1.60 × 10−6 | 0.94 | 9.03 × 105 | 2.82 × 10−6 | 0.85 | 3.77 × 10−3 | |
UTS | 3.75 | 3.55 × 103 | 1.33 × 10−6 | 0.93 | 1.08 × 105 | 3.03 × 10−6 | 0.86 | 3.84 × 10−3 | |
Failure | 3.85 | 3.45 × 103 | 4.41 × 10−6 | 0.92 | 1.06 × 105 | 3.83 × 10−6 | 0.86 | 8.11 × 10−4 | |
4 | Preload | 3.82 | 2.54 × 103 | 2.19 × 10−6 | 0.89 | 7.77 × 105 | 1.43 × 10−6 | 0.98 | 2.69 × 10−3 |
Yield | 3.98 | 3.26 × 103 | 3.16 × 10−6 | 0.87 | 1.49 × 105 | 2.65 × 10−6 | 0.87 | 2.61 × 10−3 | |
UTS | 3.91 | 2.59 × 103 | 3.74 × 10−6 | 0.86 | 1.68 × 105 | 3.42 × 10−6 | 0.87 | 2.91 × 10−3 | |
Failure | 3.90 | 2.57 × 103 | 4.18 × 10−6 | 0.86 | 1.75 × 105 | 4.57 × 10−6 | 0.89 | 3.52 × 10−3 | |
8 | Preload | 3.78 | 1.44 × 103 | 4.05 × 10−6 | 0.81 | 7.85 × 104 | 3.05 × 10−6 | 0.89 | 7.64 × 10−4 |
Yield | 3.96 | 2.08 × 103 | 6.08 × 10−6 | 0.83 | 1.78 × 105 | 4.18 × 10−6 | 0.89 | 2.75 × 10−3 | |
UTS | 3.88 | 1.09 × 103 | 6.35 × 10−6 | 0.86 | 1.24 × 105 | 4.95 × 10−6 | 0.88 | 2.67 × 10−3 | |
Failure | 3.95 | 1.01 × 103 | 8.85 × 10−6 | 0.83 | 6.04 × 104 | 5.28 × 10−6 | 0.79 | 1.40 × 10−3 | |
CBS (pH 9.1) | |||||||||
0 | Preload | 3.77 | 2.57 × 103 | 1.91 × 10−6 | 0.91 | 4.10 × 105 | 1.87 × 10−6 | 0.78 | 4.68 × 10−4 |
Yield | 3.59 | 1.34 × 103 | 2.14 × 10−6 | 0.95 | 2.01 × 105 | 4.68 × 10−6 | 0.73 | 4.91 × 10−4 | |
UTS | 3.81 | 1.21 × 103 | 4.07 × 10−6 | 0.95 | 2.47 × 105 | 5.56 × 10−6 | 0.73 | 4.21 × 10−4 | |
Failure | 3.82 | 1.87 × 103 | 4.96 × 10−6 | 0.97 | 3.22 × 105 | 5.55 × 10−6 | 0.72 | 6.57 × 10−4 | |
4 | Preload | 3.61 | 1.94 × 103 | 5.33 × 10−6 | 0.86 | 1.28 × 105 | 1.23 × 10−6 | 0.77 | 1.39 × 10−3 |
Yield | 3.84 | 1.16 × 103 | 6.06 × 10−6 | 0.83 | 2.82 × 105 | 2.86 × 10−6 | 0.74 | 2.03 × 10−3 | |
UTS | 3.85 | 1.01 × 103 | 6.82 × 10−6 | 0.86 | 2.79 × 105 | 4.90 × 10−6 | 0.75 | 2.09 × 10−3 | |
Failure | 3.71 | 8.61 × 102 | 7.91 × 10−6 | 0.78 | 7.35 × 104 | 5.14 × 10−6 | 0.74 | 1.85 × 10−3 | |
8 | Preload | 3.72 | 1.73 × 103 | 1.31 × 10−6 | 0.84 | 1.58 × 104 | 2.95 × 10−6 | 0.81 | 8.21 × 10−4 |
Yield | 3.99 | 7.38 × 102 | 5.92 × 10−6 | 0.81 | 1.34 × 104 | 5.40 × 10−6 | 0.71 | 5.18 × 10−4 | |
UTS | 3.98 | 5.43 × 102 | 7.63 × 10−6 | 0.88 | 2.99 × 104 | 6.44 × 10−6 | 0.74 | 1.18 × 10−3 | |
Failure | 3.91 | 3.91 × 102 | 8.24 × 10−6 | 0.87 | 1.60 × 104 | 6.25 × 10−6 | 0.73 | 9.54 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, U.; Bastidas, D.M. Stress Corrosion Cracking Mechanisms of UNS S32205 Duplex Stainless Steel in Carbonated Solution Induced by Chlorides. Metals 2023, 13, 567. https://doi.org/10.3390/met13030567
Martin U, Bastidas DM. Stress Corrosion Cracking Mechanisms of UNS S32205 Duplex Stainless Steel in Carbonated Solution Induced by Chlorides. Metals. 2023; 13(3):567. https://doi.org/10.3390/met13030567
Chicago/Turabian StyleMartin, Ulises, and David M. Bastidas. 2023. "Stress Corrosion Cracking Mechanisms of UNS S32205 Duplex Stainless Steel in Carbonated Solution Induced by Chlorides" Metals 13, no. 3: 567. https://doi.org/10.3390/met13030567
APA StyleMartin, U., & Bastidas, D. M. (2023). Stress Corrosion Cracking Mechanisms of UNS S32205 Duplex Stainless Steel in Carbonated Solution Induced by Chlorides. Metals, 13(3), 567. https://doi.org/10.3390/met13030567