Investigation of Structure and Mechanical Characteristics of a High Manganese Steel via SolidCast Simulation Method
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.K.; Das, K. Microstructural characterization of Hadfield austenitic manganese steel. J. Mater. Sci. 2008, 43, 5654–5658. [Google Scholar] [CrossRef]
- Moghaddam, E.G.; Varahram, N.; Davami, P. On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel. Mater. Sci. Eng. A 2012, 532, 260–266. [Google Scholar] [CrossRef]
- Feng, X.Y.; Zhang, F.C.; Yang, Z.N.; Zhang, M. Wear behaviour of nanocrystallised Hadfield steel. Wear 2013, 305, 299–304. [Google Scholar] [CrossRef]
- Karaman, I.; Sehitoglu, H.; Chumlyakov, Y.I.; Maier, H.J.; Kireeva, I.V. The effect of twinning and slip on the Bauschinger effect of Hadfield steel single crystals. Metall. Mater. Trans. A 2001, 32, 695–706. [Google Scholar] [CrossRef]
- Kusakin, P.; Tsuzaki, K.; Molodov, D.A.; Kaibyshev, R.; Belyakov, A. Advanced thermomechanical processing for a high-Mn austenitic steel. Metall. Mater. Trans. A 2016, 47, 5704–5708. [Google Scholar] [CrossRef]
- LI, X.; Wang, C.; Lu, L.U. Microstructure and impact wear resistance of TiN reinforced high manganese steel matrix. J. Iron Steel Res. Int. 2012, 19, 60–65. [Google Scholar]
- Dingshan, L.; Zhongyi, L.; Wei, L. Influence of carbon content on microstructure and mechanical properties of Mn13Cr2 and Mn18Cr2 cast steels. China Foundry 2014, 11, 173–178. [Google Scholar]
- Wen, Y.H.; Peng, H.B.; Si, H.T.; Xiong, R.L.; Raabe, D. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Mater. Des. 2014, 55, 798–804. [Google Scholar] [CrossRef]
- Mishra, S.; Chaubey, A.; Mandal, A. Effect of Heat Treatment on the Microstructure of Mg-4Al-Nd Alloys. Technologies 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.K.; Nguyen, D.N.; Hoang, A.T. Influence of Vanadium Content on the Microstructure and Mechanical Properties of High-Manganese Steel. Int. J. Mech. Mechatron. Eng. 2018, 18, 141–147. [Google Scholar]
- Hazeli, K.; Askari, H.; Cuadra, J.; Streller, F.; Carpick, R.W.; Zbib, H.M.; Kontsos, A. Microstructure-sensitive investigation of magnesium alloy fatigue. Int. J. Plast. 2015, 68, 55–76. [Google Scholar] [CrossRef]
- Holtzer, M.; Bobrowski, A.; Drożyński, D.; Mocek, J. Investigations of protective coatings for castings of high-manganese cast steels. Arch. Foundry Eng. 2013, 13, 39–44. [Google Scholar] [CrossRef]
- Beladi, H.; Nuhfer, N.T.; Rohrer, G.S. The five-parameter grain boundary character and energy distributions of a fully austenitic high-manganese steel using three-dimensional data. Acta Mater. 2014, 70, 281–289. [Google Scholar] [CrossRef]
- Kim, J.-K.; Chen, L.; Kim, H.-S.; Kim, S.-K.; Estrin, Y.; Cooman, B.C.D. On the tensile behavior of high-manganese twinning-induced plasticity steel. Metall. Mater. Trans. A 2009, 40, 3147. [Google Scholar] [CrossRef]
- Lindroos, M.; Apostol, M.; Heino, V.; Valtonen, K.; Laukkanen, A.; Holmberg, K.; Kuokkala, V.T. The deformation, strain hardening, and wear behavior of chromium-alloyed hadfield steel in abrasive and impact conditions. Tribol. Lett. 2015, 57, 24. [Google Scholar] [CrossRef]
- Wei, S.; Jinhua, Z.; Liujie, X.; Rui, L. Effects of carbon on microstructures and properties of high vanadium high-speed steel. Mater. Des. 2006, 27, 58–63. [Google Scholar] [CrossRef]
- Ham, Y.S.; Kim, J.T.; Kwak, S.Y.; Choi, J.K.; Yoon, W.Y. Critical cooling rate on carbide precipitation during quenching of austenitic manganese steel. China Foundry 2010, 7, 177–182. [Google Scholar]
- Liu, F. Optimized Design of Gating/Riser System in Casting Based on CAD and Simulation Technology. Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2009. [Google Scholar]
- Mane, V.V.; Sata, A.; Khire, M.Y. New approach to casting defects classification and analysis supported by simulation. In Proceedings of the 59th Indian Foundry Congress & International Foundry Exhibition (IFEX 2011), Chandigarh, India, 12 February 2011. [Google Scholar]
- Brown, J.R. Foseco Ferrous Foundryman’s Handbook, 11th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Viswanathan, S.; Apelian, D.; Donahue, R.J.; DasGupta, B.; Gywn, M.; Jorstad, J.L.; Monroe, R.W.; Sahoo, M.; Prucha, T.E.; Twarog, D. ASM Handbook Volume 15: Casting; ASM International: Almere, The Netherlands, 2008. [Google Scholar]
- Mirbagheri, S.; Shrinparvar, M.; Ashory, H.; Davami, P. Simulation of surface roughness on the flow pattern in the casting process. Mater. Des. 2004, 25, 655–661. [Google Scholar] [CrossRef]
- Masoumi, M.; Hu, H.; Hedjazi, J.; Boutorabi, M. Effect of gating design on mold filling. Trans. Am. Foundry Soc. 2005, 113, 185–196. [Google Scholar]
- Rajput, R.K. A Textbook of Manufacturing Technology: Manufacturing Processes; Laxmi Publication Pvt Ltd.: Delhi, India, 2007. [Google Scholar]
- Hu, B.; Tong, K.; Niu, X.P.; Pinwill, I. Design and optimisation of runner and gating systems for the die casting of thinwalled magnesium telecommunication parts through numerical simulation. J. Mater. Process. Technol. 2000, 105, 128–133. [Google Scholar] [CrossRef]
- Devendar, G.; Kumar, K.S.; Reddy, A.C. Modification of gating system for proper mould filling of bracket casting using procast. In Proceedings of the International Conference on Advanced Materials and manufacturing Technologies (AMMT), Shenzhen, China, 23–24 August 2014; pp. 249–253. [Google Scholar]
- Smith, R.W.; DeMonte, A.; Mackay, W.B.F. Development of high-manganese steels for heavy duty cast-to-shape applications. J. Mater. Process. Technol. 2004, 153, 589–595. [Google Scholar] [CrossRef]
- Yang, D.; Li, S.; He, F.; Sung, W.; Kao, J.; Chen, R. Twin gating system design for typical thin wall stainless steel castings based on fast pouring mechanism. Front. Mech. Eng. Mater. Eng. II 2014, 457–458, 1657–1660. [Google Scholar] [CrossRef]
- Pawliczek, A.; Vladik, V. Impact of electric power prices on total costs of foundry casting production with the side effect on global competitiveness. In Proceedings of the 23rd International Conference on Metallurgy and Materials Metal, Brno, Czech Republic, 21–23 May 2014; pp. 1558–1563. [Google Scholar]
- Ducic, N.; Slavkovic, R.; Milicevic, I.; Cojbasic, Z.; Manasijevic, S.; Radisa, R. Optimization of the gating system for sand casting using genetic algorithm. Int. J. Metalcast. 2017, 11, 255–265. [Google Scholar] [CrossRef]
- Fourie, J.; Lelito, J.; Zak, P.; Krajewski, P.; Wolczynski, W. Numerical optimization of the gating system for an inlet valve casting made of titanium alloy. Arch. Metall. Mater. 2015, 60, 2437–2446. [Google Scholar] [CrossRef]
- Wang, T.; Yao, S.; Tong, Q.; Sui, L. Improved filling condition to reduce casting inclusions using the submerged gate method. J. Manuf. Process. 2017, 27, 108–113. [Google Scholar] [CrossRef]
- Hawranek, R.; Lelito, J.; Suchy, J.; Zak, P. The simulation of a liquid cast iron flow through the gating system with filter. Arch. Metall. Mater. 2009, 54, 351–358. [Google Scholar]
- Huang, P.; Lin, C. Computer-aided modeling and experimental verification of optimal gating system design for investment casting of precision rotor. Int. J. Adv. Manuf. Technol. 2015, 79, 997–1006. [Google Scholar] [CrossRef]
- Modaresi, A.; Safikhani, A.; Noohi, A.; Hamidnezhad, N.; Maki, S. Gating system design and simulation of gray iron casting to eliminate oxide layers caused by turbulence. Int. J. Metalcast. 2017, 11, 328–339. [Google Scholar] [CrossRef]
- Campbell, J. Stop pouring, start casting. Int. J. Metalcast. 2012, 6, 7–18. [Google Scholar] [CrossRef]
- Campbell, J. Cavitation in liquid and solid metals: Role of bifilms. Mater. Sci. Technol. 2015, 31, 565–572. [Google Scholar] [CrossRef]
- Campbell, J. Sixty years of casting research. Metall. Mater. Trans. A 2015, 46A, 4848–4853. [Google Scholar] [CrossRef]
- Jezierski, J.; Dojka, R.; Janerka, K. Optimizing the gating system for steel castings. Metals 2018, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Ersson, M.; Mao, H.; Jönsson, P.G. Mathematical modelling of the initial mold filling with utilization of an angled runner. Metals 2019, 9, 693. [Google Scholar] [CrossRef] [Green Version]
- Sama, S.R.; MacDonald, E.; Voigt, R.; Manogharan, G. Measurement of metal velocity in sand casting during mold filling. Metals 2019, 9, 1079. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, M.; Pagone, E.; Jolly, M.; Salonitis, K. Numerical simulation and evaluation of campbell running and gating systems. Metals 2020, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Majernik, J.; Gaspar, S.; Kmec, J.; Karkova, M.; Mascenik, J. Possibility of utilization of gate geometry to modify the mechanical and structural properties of castings on the Al-Si basis. Materials 2020, 13, 3539. [Google Scholar] [CrossRef]
- Gašpár, Š.; Corani, T.; Majerník, J.; Husár, J.; Cíková, L.K.; Gojdan, D.; Paško, J. Influence of gating system parameters of die-cast molds on properties of Al-Si castings. Materials 2021, 14, 3755. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Shan, Q.; Li, Z.; Jiang, Y.; Ge, R. Influence of heat-treatment on enhancement of yield strength and hardness by Ti-V-Nb alloying in high-manganese austenitic steel. Metals 2019, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Heine, R.W.; Loper, C.R.; Rosenthal, P.C. Principles of Metal Casting; McGraw-Hill: New York City, NY, USA, 1955. [Google Scholar]
- Alrobei, H.; Malik, R.A.; Hussain, A.; Alzaid, M.; Farhat, L.B.; Badruddin, I.A. Effects of gating design on structural and mechanical properties of high manganese steel by optimizing casting process parameters. J. Mech. Sci. Technol. 2022, 36, 3931–3937. [Google Scholar] [CrossRef]
- Li, J.; Chen, R.; Ma, Y.; Ke, W. Characterization and prediction of microporosity defect in sand cast WE54 alloy castings. J. Mech. Sci. Technol. 2014, 30, 991–997. [Google Scholar] [CrossRef]
- Muenprasertdee, P. Solidification Modelling of Iron Castings Using SOLIDCast. Master’s Thesis, West Virginia University, Morgantown, WV, USA, 2007. [Google Scholar]
C% | Si% | Mn% | S% | P% | Cr% | Mo% | Ni% | Al% | Cu% |
---|---|---|---|---|---|---|---|---|---|
1.10 | 0.64 | 12.00 | 0.010 | 0.085 | 1.60 | 0.05 | 0.30 | 0.042 | 0.18 |
Material’s Properties | Value |
---|---|
Thermal Conductivity (W/m-K) | 25.5 |
Specific Heat (J/kg-k) | 500 |
Density (kg/m3) | 7690 |
Initial temperature (°C) | 1470 |
Solidification temperature (°C) | 1193 |
Latent heat of fusion (J/kg) | 279,924.9 |
Freezing Range (°C) | 185 |
Parameter | Value |
---|---|
Casting’s Net weight (kg) | 7 |
Pouring Temperature (°C) | 1410 |
Melting Temperature (°C) | 1375 |
Pouring time (s) | 16 |
Pouring rate (kg/s) | 4.6 |
Mold filling velocity of gate (mm/s) | 891.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrobei, H.; Malik, R.A.; Amjad, F.; AlBaijan, I. Investigation of Structure and Mechanical Characteristics of a High Manganese Steel via SolidCast Simulation Method. Metals 2023, 13, 572. https://doi.org/10.3390/met13030572
Alrobei H, Malik RA, Amjad F, AlBaijan I. Investigation of Structure and Mechanical Characteristics of a High Manganese Steel via SolidCast Simulation Method. Metals. 2023; 13(3):572. https://doi.org/10.3390/met13030572
Chicago/Turabian StyleAlrobei, Hussein, Rizwan Ahmed Malik, Farhan Amjad, and Ibrahim AlBaijan. 2023. "Investigation of Structure and Mechanical Characteristics of a High Manganese Steel via SolidCast Simulation Method" Metals 13, no. 3: 572. https://doi.org/10.3390/met13030572
APA StyleAlrobei, H., Malik, R. A., Amjad, F., & AlBaijan, I. (2023). Investigation of Structure and Mechanical Characteristics of a High Manganese Steel via SolidCast Simulation Method. Metals, 13(3), 572. https://doi.org/10.3390/met13030572