Thermodynamic Calculations of Direct Reduction Smelting Technology of Copper Oxide Ores Based on Smelting Slag from the Yubeidi Site, Yunnan Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Archaeological Background of the Samples
2.2. Characterization Methods
2.2.1. Metallographic Inspection
2.2.2. Scanning Electron Microscope and X-ray Energy Dispersy Spectrum (SEM-EDS)
2.2.3. X-ray Diffraction (XRD)
2.2.4. Radiocarbon Date
2.2.5. Thermodynamic Software Simulation
3. Characterization Results
3.1. Matrix Composition of Samples
3.2. Microzone Composition and Metallographic Examination of Samples
3.2.1. Roasted Oxidized Copper Ore
3.2.2. Slages without Detectable Copper Metal
3.2.3. Slages with Metallic Copper Particles
3.3. X-ray Diffraction Characterization Result
4. Analysis of Characterization Results and Discussion
- (1)
- Direct reduction smelting of copper oxide minerals to obtain metallic copper;
- (2)
- Smelting of copper sulfide minerals, which are theoretically desulfurized after roasting, and then subjected to reduction smelting to obtain metallic copper;
- (3)
- Smelting of copper sulfide minerals, which are subjected to multiple roasting to obtain an intermediate product called matte. The matte is then reduced and smelted to obtain metallic copper.
4.1. Calculation of Cu and S Content in the Matte Slag
4.2. Calculation of Cu and S Content in the Reduction Smelting Slag
4.3. Analysis of the Ore Origin
4.4. Discussion
5. Conclusions
- (1)
- The Yubeidi site used charcoal as fuel and high-grade copper oxide ores as raw materials to separate metal copper from vein minerals by reducing copper oxide minerals, to obtain metallic copper.
- (2)
- During the smelting process, the reduction atmosphere and smelting temperature control were poor, and most of the Cu participated in entering the slag and reacted with iron oxide to form Cu2O·Fe2O3 (delafossite) resulting in high Cu content in the slag.
- (3)
- The slag from the Yubeidi site was sticky, making it difficult to separate copper from slag, resulting in relatively low copper smelting efficiency. No calcium or silica-based fluxes were found.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rothenberg, B. Ancient copper industries in the Western Arabah: An archaeological survey of the Arabah, part 1. Palest. Explor. Q. 1962, 94, 5–71. [Google Scholar] [CrossRef]
- Bachmann, H.G. The Identification of Slags from Archaeological Sites; Routledge: London, UK, 2016. [Google Scholar]
- Lupu, A. Metallurgical aspects of Chalcolithic copper working at Timna (Israel). Bull. Hist. Metall. Group 1970, 4, 21–23. [Google Scholar]
- Tylecote, R.F. Metallurgy in Archaeology: A Prehistory of Metallurgy in the British Isles; Edward Arnold: London, UK, 1962. [Google Scholar]
- Morton, G.R.; Wingrove, J. Constitution of bloomery slags: Part 1: Roman. J. Iron Steel Inst. 1969, 207, 1556–1564. [Google Scholar]
- Milton, C.; Dwornik, E.J.; Finkelman, R.B.; Toulmin, P. Slag from an ancient copper smelter at Timna Israel. J. Hist. Metall. Soc. 1976, 10, 24–33. [Google Scholar]
- Liss, B.; Levy, T.E. Using X-ray Fluorescence to Examine Ancient Extractive Metallurgy Practices: A Case Study from Iron Age Khirbatal-Jariya, Jordan. J. Powder Metall. Min. 2016, 5, 1–5. [Google Scholar]
- Ankusheva, P.; Ankushev, M.N.; Alaeva, I. The Copper Smelting Furnace at the Novotemirsky Ancient Mine. Povolzhskaya Arkheologiya (Volga River Reg. Archaeol.) 2022, 1, 34–48. [Google Scholar] [CrossRef]
- Oudbashi, O.; Hessari, M. Iron Age tin bronze metallurgy at Marlik, Northern Iran: An analytical investigation. Archaeol. Anthropol. Sci. 2017, 9, 233–249. [Google Scholar] [CrossRef]
- Rademakers, F.W.; Farci, C. Reconstructing bronze production technology from ancient crucible slag: Experimental perspectives on tin oxide identification. J. Archaeol. Sci. Rep. 2018, 18, 343–355. [Google Scholar] [CrossRef]
- Haubner, R.; Strobl, S. Considerations on copper smelting from Fahlores and the metallurgy of cu-as bronzes. BHM Berg-Und Hüttenmännische Mon. 2022, 1–11. [Google Scholar] [CrossRef]
- Jiang, Z.; Xing, X.; Yang, W.; Yang, Q.; Yang, L.; Li, W.; Lu, Y. A Preliminary Research on Yubeidi Site at Dongchuan District in Kuming City, Yunnan Province. Res. China’s Front. Archaeol. 2019, 1, 95–115. (In Chinese) [Google Scholar]
- Pauporte, T.; Vedel, J. Temperature effects on copper diffusion in natural chalcocite. Solid State Ion. 1999, 116, 311–320. [Google Scholar] [CrossRef]
- Gainov, R.R.; Vagizov, F.G.; Golovanevskiy, V.A.; Ksenofontov, V.A.; Klingelhöfer, G.; Klekovkina, V.V.; Shumilova, T.G.; Pen’kov, I.N. Application of 57Fe Mössbauer spectroscopy as a tool for mining exploration of bornite (Cu5FeS4) copper ore. Hyperfine Interact. 2014, 226, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Zand, L.; Vakylabad, A.B.; Masoumi, M.E. Homogeneous Catalytic Dissolution of Recalcitrant Chalcopyrite (CuFeS2). Top. Catal. 2022, 1–13. [Google Scholar] [CrossRef]
- Lastra-Quintero, R.; Rowlands, N.; Rao, S.R.; Finch, J.A. Characterization and separation of a copper smelter dust residue. Can. Metall. Q. 1987, 26, 85–90. [Google Scholar] [CrossRef]
- Aquino, A.; Lezzerini, M.; Giaccherini, A.; Montegrossi, G.; Di Benedetto, F. Thermochemical stability of delafossite and other relevant ternary phases in the Cu–Fe–S–O–H system. Appl. Geochem. 2020, 123, 104795. [Google Scholar] [CrossRef]
- Deng, J.; Wen, S.; Deng, J.; Wu, D.; Yang, J. Extracting copper by lactic acid from copper oxide ore and dissolution kinetics. J. Chem. Eng. Jpn. 2015, 48, 538–544. [Google Scholar] [CrossRef]
- Chiarantini, L.; Benvenuti, M.; Costagliola, P.; Fedi, M.E.; Guideri, S.; Romualdi, A. Copper production at Baratti (Populonia, southern Tuscany) in the early Etruscan period (9th–8th centuries BC). J. Archaeol. Sci. 2009, 36, 1626–1636. [Google Scholar] [CrossRef]
- Radivojević, M.; Rehren, T. Paint it black: The rise of metallurgy in the Balkans. J. Archaeol. Method Theory 2016, 23, 200–237. [Google Scholar] [CrossRef] [Green Version]
- Sdralia, A.M.; Kassianidou, V.; Rehren, T. Late Roman copper smelting in Polis Chrysochous, Cyprus. J. Archaeol. Sci. Rep. 2023, 48, 103889. [Google Scholar] [CrossRef]
- Rostoker, W.; Pigott, V.C.; Dvorak, J.R. Direct reduction to copper metal by oxide--sulfide mineral interaction. Archeomaterials 1989, 3, 69–87. [Google Scholar]
- Schlesinger, M.E.; King, M.J.; Sole, K.C.; Davenport, W.G. Extractive Metallurgy of Copper, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 73–88. [Google Scholar]
- Bellemans, I.; De Wilde, E.; Moelans, N.; Verbeken, K. Metal losses in pyrometallurgical operations—A review. Adv. Colloid Interface Sci. 2018, 255, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Topçu, M.A.; Rüşen, A.; Derin, B. Minimizing of copper losses to converter slag by a boron compound addition. J. Mater. Res. Technol. 2019, 8, 6244–6252. [Google Scholar] [CrossRef]
- Zivkovic, Z.; Djordjevic, P.; Mitevska, N. Contribution to the Examination of the Mechanisms of Copper Loss with the Slag in the Process of Sulfide Concentrates Smelting. Min. Metall. Explor. 2020, 37, 267–275. [Google Scholar] [CrossRef]
- Metten, B. Beitrag zur Spätbronzezeitlichen Kupfermetallurgie im Trentino (Südalpen) im Vergleich mit Anderen Prähistorischen Kupferschlacken aus dem Alpenraum. Ph.D. Thesis, Faculty of Geosciences, Ruhr-University Bochum, Bochum, Germany, 1997. [Google Scholar]
- Ryndina, N.; Indenbaum, G.; Kolosova, V. Copper production from polymetallic sulphide ores in the northeastern Balkan Eneolithic culture. J. Archaeol. Sci. 1999, 26, 1059–1068. [Google Scholar] [CrossRef]
- Tylecote, R.F. Early metallurgy in Cyprus. In The Late Bronze Age: Copper and Bronze Metallurgy at Enkomi and Kition; Muhly, J.D., Maddin, R., Karageorghis, V., Eds.; 4000–500 B.C. Pierides Foundation: Nicosia, Cyprus, 1982; pp. 81–103. [Google Scholar]
- Avetisyan, H.K. Metallurgiya Chernovoi Medi; Metallurgiya: Moscow, Russia, 1954; pp. 1–464. (In Russian) [Google Scholar]
- De Wilde, E.; Bellemans, I.; Zheng, L.; Campforts, M.; Guo, M.; Blanpain, B.; Moelans, N.; Verbeken, K. Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags. Mater. Sci. Technol. 2016, 32, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Wei, Y.; Shi, Y.; Li, B.; Wang, H. Characterization and recovery of copper from converter copper slag via smelting separation. Metall. Mater. Trans. B 2018, 49, 2458–2468. [Google Scholar] [CrossRef]
- Deng, T.; Chen, J. Treatment of oxidized copper ores with emphasis on refractory ores. Miner. Procesing Extr. Metall. Rev. 1991, 7, 175–207. [Google Scholar] [CrossRef]
- Yao, A.; Darré, V.; Zhilong, J.; Lam, W.; Wei, Y. Bridging the time gap in the Bronze Age of Southeast Asia and Southwest China. Archaeol. Res. Asia 2020, 22, 100189. [Google Scholar] [CrossRef]
- Li, X.; Liu, R. Floatation Results and Analysis of Plant Remains from Guangfentou Site in Jiangchuan, Yunnan. Agric. Archaeol. 2016, 145, 20–27. (In Chinese) [Google Scholar]
- Zou, G.; Cui, J.; Liu, X.; Li, X.; Min, R. Investigation of early Bronze Age civilizations in Yunnan: A scientific analysis of metallurgical relics found at the Guangfentou ruins in Jiangchuan. Archaeol. Anthropol. Sci. 2019, 11, 15–31. [Google Scholar] [CrossRef]
Serial Number | Test Number | Bulk Chemical Composition (wt%) | Classification | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na2O | MgO | Al2O3 | SiO2 | P2O5 | S | K2O | CaO | FeO | CuO | |||
1 | YBD01 | - | 0.8 | - | 21.7 | 2.6 | 2.3 | - | 1.8 | - | 70.9 | I |
2 | YBD02 | - | - | 1.0 | 15.0 | 5.2 | 9.0 | - | 1.7 | 19.0 | 49.1 | |
3 | YBD03 | - | 1.1 | - | 15.1 | 8.3 | 2.9 | - | 2.5 | 4.1 | 66.0 | |
4 | YBD06 | - | 0.5 | 0.6 | 23.2 | 6.4 | 2.0 | - | 5.3 | 2.3 | 59.6 | |
5 | YBD10 | - | 0.5 | - | 13.7 | 6.6 | 7.2 | - | 1.7 | 9.5 | 60.7 | |
6 | YBD13 | - | 3.1 | - | 19.6 | 7.9 | - | - | 1.9 | 2.0 | 65.5 | |
7 | YBD19 | - | - | - | 30.8 | - | - | - | 1.0 | - | 68.2 | |
8 | YBD05 | - | - | 0.9 | 13.1 | 1.8 | - | - | - | 9.7 | 74.6 | II |
9 | YBD07 | - | - | - | 63.6 | - | - | - | - | 2.0 | 32.9 | |
10 | YBD08 | - | - | 0.5 | 57.5 | - | - | - | - | 9.9 | 32.2 | |
11 | YBD11 | - | 0.9 | 1.0 | 59.6 | - | - | - | 4.9 | 26.2 | 7.3 | |
12 | YBD12 | - | 2.0 | 1.1 | 37.1 | - | - | - | 3.9 | 22.5 | 33.4 | |
13 | YBD21 | - | - | - | 67.3 | - | - | 2.3 | 2.4 | 14.6 | 13.4 | |
14 | YBD23 | - | 1.0 | - | 42.5 | 5.4 | - | - | 4.0 | 10.0 | 37.1 | |
15 | YBD04 | - | 0.6 | 1.1 | 49.1 | - | - | - | - | 12.5 | 36.6 | III |
16 | YBD09 | - | - | - | 72.9 | - | - | - | - | 10.2 | 16.8 | |
17 | YBD14 | - | - | 1.2 | 19.8 | - | 3.7 | - | - | 52.9 | 22.4 | |
18 | YBD15 | - | - | - | 48.1 | 3.6 | 1.2 | 0.9 | 2.2 | 39.7 | 4.2 | |
19 | YBD16 | - | - | 1.0 | 46.8 | 6.2 | - | 1.0 | 3.4 | 13.8 | 27.8 | |
20 | YBD17 | - | - | 1.2 | 62.5 | - | - | 0.7 | 1.0 | 32.3 | 2.2 | |
21 | YBD18 | - | - | 0.8 | 33.7 | 2.2 | - | - | - | 6.5 | 56.8 | |
22 | YBD20 | - | - | - | 71.0 | - | - | - | 2.2 | 13.6 | 13.3 | |
23 | YBD22 | 0.9 | 0.7 | 0.8 | 50.4 | 3.2 | - | 0.6 | 2.2 | 20.7 | 20.6 | |
24 | YBD24 | - | 1.1 | 1.2 | 21.9 | - | - | - | 2.1 | 47.0 | 26.7 |
Experiment ID | Sample | Excavation Pit Number of the Sample | Age (Befmineral Present) | Age Calibrated with Tree-Ring Chronology |
---|---|---|---|---|
BA170794 | Charcoal | H23 | 2350 ± 25 | 490 BC (95.4%) 381 BC |
BA170795 | Charcoal | H23 | 2150 ± 25 | 355 BC (29.5%) 292 BC 231 BC (65.9%) 97 BC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, X.; Zhu, R.; Li, Y. Thermodynamic Calculations of Direct Reduction Smelting Technology of Copper Oxide Ores Based on Smelting Slag from the Yubeidi Site, Yunnan Province. Metals 2023, 13, 707. https://doi.org/10.3390/met13040707
Li S, Li X, Zhu R, Li Y. Thermodynamic Calculations of Direct Reduction Smelting Technology of Copper Oxide Ores Based on Smelting Slag from the Yubeidi Site, Yunnan Province. Metals. 2023; 13(4):707. https://doi.org/10.3390/met13040707
Chicago/Turabian StyleLi, Shuoyang, Xiaocen Li, Rong Zhu, and Yanxiang Li. 2023. "Thermodynamic Calculations of Direct Reduction Smelting Technology of Copper Oxide Ores Based on Smelting Slag from the Yubeidi Site, Yunnan Province" Metals 13, no. 4: 707. https://doi.org/10.3390/met13040707
APA StyleLi, S., Li, X., Zhu, R., & Li, Y. (2023). Thermodynamic Calculations of Direct Reduction Smelting Technology of Copper Oxide Ores Based on Smelting Slag from the Yubeidi Site, Yunnan Province. Metals, 13(4), 707. https://doi.org/10.3390/met13040707