Effect of Mg on Inclusion and High Cycle Fatigue Behavior in Titanium Microalloyed Beam Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Characterization of the Inclusions
2.3. Fatigue Testing and Fracture Observation
3. Results and Discussion
3.1. Effect of Mg on the Composition and Morphology of Inclusions
3.2. Effect of Mg on Size and Quantity of Inclusions
3.3. Effect of Mg on Fatigue Properties
3.4. Effect of Mg on Fatigue Crack Growth
4. Conclusions
- (1)
- The addition of Mg can effectively modify the inclusions in the titanium microalloyed high-strength beam steel. The Al2O3 in the experimental steel is modified to MgO·Al2O3 under the aluminum deoxidation conditions.
- (2)
- After the addition of Mg, the area of inclusions decreased and the number density increased, in particular, the proportion of inclusions with an area less than 5 µm2 increased significantly. The addition of Mg greatly reduced the size of Al2O3 and TiN, and promoted the formation of finer complex inclusions with a MgO·Al2O3 core.
- (3)
- The effect of the inclusion size on the fatigue property is much greater than the inclusion number of the experimental steels. After the Mg addition, the inclusions are refined through the heterogeneous nucleation effect of MgO·Al2O3. The fatigue strength of Beam-2 steel increased by approximately 33 MPa despite a decrease in tensile strength of approximately 54 MPa.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Ryberg, M.; Yang, Y.; Feng, K.; Kara, S.; Hauschild, M.; Chen, W.Q. Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts. Nat. Commun. 2021, 12, 2066. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, P.; Weber, S.; Gillingham, K.; Hertwich, E.G. Pricing indirect emissions accelerates low-carbon transition of US light vehicle sector. Nat. Commun. 2021, 12, 7121. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, J.; Sahoo, S.; Mohanty, S.; Nayak, S.K. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: A review. J. Thermoplast. Compos. 2020, 33, 978–1013. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Z.; Wu, G.; Mao, X. Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties. Int. J. Min. Met. Mater. 2022, 29, 645–661. [Google Scholar] [CrossRef]
- Bai, Y.; Nardi, D.C.; Zhou, X.; Picón, R.A.; Flórez-López, J. A new comprehensive model of damage for flexural subassemblies prone to fatigue. Comput. Struct. 2021, 256, 106639. [Google Scholar] [CrossRef]
- Mao, X. Titanium Microalloyed Steel: Fundamentals, Technology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–34. [Google Scholar]
- Zhang, Q.; Huo, X.; Li, L.; Chen, S.; Lu, C. Correlation between Precipitation and Recrystallisation during Stress Relaxation in Titanium Microalloyed Steel. Metals 2022, 12, 1920. [Google Scholar] [CrossRef]
- Tang, S.; Li, X.; Li, J.; Liu, Z.; Wang, G. Role of Microalloying Elements on Recrystallization Kinetics of Cold-Rolled High Strength Low Alloy Steels. Metals 2022, 12, 1741. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Li, Z.; Sun, X. Microstructure Evolution and Precipitation Behavior in Nb and Nb-Mo Microalloyed Fire-Resistant Steels. Metals 2023, 13, 112. [Google Scholar] [CrossRef]
- Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a root cause of fatigue failure of metallic components. I: Basic aspects. Eng. Fail. Anal. 2019, 97, 777–792. [Google Scholar] [CrossRef]
- Zerbst, U.; Madia, M.; Klinger, C.; Bettge, D.; Murakami, Y. Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions. Eng. Fail. Anal. 2019, 98, 228–239. [Google Scholar] [CrossRef]
- Zhu, M.L.; Jin, L.; Xuan, F.Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes. Acta Mater. 2018, 157, 259–275. [Google Scholar] [CrossRef]
- Murakami, Y. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals. JSME Int. J. Ser. 1 Solid Mech. Strength Mater. 1989, 32, 167–180. [Google Scholar] [CrossRef]
- Murakami, Y.; Kodama, S.; Konuma, S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int. J. Fatigue 1989, 11, 291–298. [Google Scholar] [CrossRef]
- Scorza, D.; Carpinteri, A.; Ronchei, C.; Vantadori, S.; Zanichelli, A. Effect of non-metallic inclusions on AISI 4140 fatigue strength. Int. J. Fatigue 2022, 163, 107031. [Google Scholar] [CrossRef]
- Sun, C.; Lei, Z.; Xie, J.; Hong, Y. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure. Int. J. Fatigue 2013, 48, 19–27. [Google Scholar] [CrossRef]
- Wang, P.; Wang, B.; Liu, Y.; Zhang, P.; Luan, Y.K.; Li, D.Z.; Zhang, Z.F. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel. Scr. Mater. 2022, 206, 114232. [Google Scholar] [CrossRef]
- Yang, Z.G.; Zhang, J.M.; Li, S.X.; Wang, Q.Y.; Hui, W.J.; Weng, Y.Q. On the critical inclusion size of high strength steels under ultra-high cycle fatigue. Mat. Sci. Eng. A 2006, 427, 167–174. [Google Scholar] [CrossRef]
- Beretta, S.; Anderson, C.; Murakami, Y. Extreme value models for the assessment of steels containing multiple types of inclusion. Acta Mater. 2006, 54, 2277–2289. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.; Wang, Q.; Liu, Y.; Bai, Y.; He, T.; Yuan, G. Microstructural refinement by the formation of acicular ferrite on Ti–Mg oxide inclusion in low-carbon steel. Mat. Sci. Eng. A 2021, 824, 141795. [Google Scholar] [CrossRef]
- Guo, H.; Yang, S.; Wang, T.; Yuan, H.; Zhang, Y.; Li, J. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@ C nanoparticle addition. J. Mater. Sci. Technol. 2022, 99, 277–287. [Google Scholar] [CrossRef]
- Kimura, K.; Fukumoto, S.; Shigesato, G.; Takahashi, A. Effect of Mg addition on equiaxed grain formation in ferritic stainless steel. ISIJ Int. 2013, 53, 2167–2175. [Google Scholar] [CrossRef]
- Guo, H.; Yang, S.; Li, J.; Zhao, M.; Chen, Z.; Zhang, X.; Li, J. Effects of Surface-Modified MgO Nanoparticles on Inclusion Characteristics and Microstructure in Carbon Structural Steel. JOM 2018, 70, 1136–1142. [Google Scholar] [CrossRef]
- Qu, T.; Wang, D.; Wang, H.; Hou, D.; Tian, J. Thermodynamic analysis on tin precipitation behavior in Ti-bearing peritectic steel after magnesium treatment. J. Cent. South Univ. 2020, 27, 3637–3651. [Google Scholar] [CrossRef]
- Liu, Y.; Zong, N. Effects of Al-Mg alloy treatment on behavior and size of inclusions in SUH 409L stainless steel. Metall. Res. Technol. 2018, 115, 111. [Google Scholar] [CrossRef]
- Park, J.S.; Park, J.H. Effect of Mg-Ti deoxidation on the formation behavior of equiaxed crystals during rapid solidification of iron alloys. Steel Res. Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef]
- Kim, S.K.; Suito, H.; Inoue, R. Effect of multi-phase oxide particles on TiN crystallization and solidification structure in Ti-added ferritic stainless steel. ISIJ Int. 2012, 52, 1935–1944. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, W.; Li, G.; Matsuura, H.; Tsukihashi, F. Effect of inclusions’ behavior on the microstructure in Al-Ti deoxidized and magnesium-treated steel with different aluminum contents. Metall. Mater. Trans. B 2015, 46, 1226–1241. [Google Scholar] [CrossRef]
- Ma, W.J.; Bao, Y.P.; Zhao, L.H.; Wang, M. Control of the precipitation of TiN inclusions in gear steels. Int. J. Min. Met. Mater. 2014, 21, 234–239. [Google Scholar] [CrossRef]
- Gao, T.; Sun, Z.; Xue, H.; Retraint, D. Effect of surface mechanical attrition treatment on high cycle and very high cycle fatigue of a 7075-T6 aluminium alloy. Int. J. Fatigue 2020, 139, 105798. [Google Scholar] [CrossRef]
- Hultman, L.; Hesse, D.; Chiou, W.A. Mg–Ti–spinel formation at the TiN/MgO interface by solid state reaction: Confirmation by high-resolution electron microscopy. J. Mater. Res. 1991, 6, 1744–1749. [Google Scholar] [CrossRef]
- Qu, T.; Zhang, C.; Wang, D.; Zhan, J.; Tian, J.; Hou, D. Effect of Mg–Ti Treatment on Nucleation Mechanism of TiN Inclusions and Ferrite. Metals 2020, 10, 755. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Park, J.H. TEM characterization of a TiN-MgAl2O4 epitaxial interface. J. Alloys Compd. 2017, 695, 476–481. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sehitoglu, H. Mechanisms of fatigue crack growth–a critical digest of theoretical developments. Fatigue Fract. Eng. M 2016, 39, 652–674. [Google Scholar] [CrossRef]
- Gao, C.; Yang, M.Q.; Pang, J.C.; Li, S.X.; Zou, M.D.; Li, X.W.; Zhang, Z.F. Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel. Mater. Sci. Eng. A 2022, 832, 142418. [Google Scholar] [CrossRef]
- Pang, J.C.; Li, S.X.; Wang, Z.G.; Zhang, Z.F. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 2013, 564, 331–341. [Google Scholar] [CrossRef]
- Giri, S.K.; Bhattacharjee, D. Fatigue behavior of thin sheets of DP590 dual-phase steel. J. Mater. Eng. Perform. 2012, 21, 988–994. [Google Scholar] [CrossRef]
- Furuya, Y.; Abe, T. Effect of mean stress on fatigue properties of 1800 MPa-class spring steels. Mater. Des. 2011, 32, 1101–1107. [Google Scholar] [CrossRef]
- He, J.; Zhu, S.; Luo, C.; Niu, X.; Wang, Q. Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory. Int. J. Fatigue 2022, 165, 107213. [Google Scholar] [CrossRef]
- Li, X.; Zhu, S.; Liao, D.; Correia, J.A.F.O.; Berto, F.; Wang, Q. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int. J. Fatigue 2022, 159, 106788. [Google Scholar] [CrossRef]
- Li, S.; Kang, Y.; Kuang, S. Effects of microstructure on fatigue crack growth behavior in cold-rolled dual phase steels. Mater. Sci. Eng. A 2014, 612, 153–161. [Google Scholar] [CrossRef]
- Zhao, Z.P.; Qiao, G.Y.; Liao, B.; Xiao, F.R. Study of fatigue crack propagation behaviour for dual-phase X80 pipeline steel. Ironmak. Steelmak. 2018, 45, 635–640. [Google Scholar] [CrossRef]
- Song, C.; Wang, H.; Sun, Z.; Wei, Z.; Yu, H.; Chen, H.; Lu, J. Effect of multiphase microstructure on fatigue crack propagation behavior in TRIP-assisted steels. Int. J. Fatigue 2020, 133, 105425. [Google Scholar] [CrossRef]
Sample | C | Si | Mn | S | N | Nb | Ti | Al | O | Mg |
---|---|---|---|---|---|---|---|---|---|---|
standard | 0.040–0.060 | 0.05–0.10 | 1.40–1.50 | ≤0.020 | ≤0.004 | 0.030–0.050 | 0.075–0.095 | ≤0.040 | ≤0.0030 | - |
Beam-1 | 0.060 | 0.06 | 1.49 | 0.004 | 0.0030 | 0.037 | 0.075 | 0.034 | 0.0022 | 0 |
Beam-2 | 0.034 | 0.07 | 1.50 | 0.005 | 0.0023 | 0.036 | 0.075 | 0.033 | 0.0028 | 0.0006 |
Type | Tensile Strength Rm | Yield Strength Rp0.2 | Fatigue Strength |
---|---|---|---|
Beam-1 | 740 | 674 | 643 |
Beam-2 | 686 | 634 | 676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Pan, G.; Wang, S.; Song, Y.; Wu, H.; Mao, X. Effect of Mg on Inclusion and High Cycle Fatigue Behavior in Titanium Microalloyed Beam Steel. Metals 2023, 13, 760. https://doi.org/10.3390/met13040760
Gao Z, Pan G, Wang S, Song Y, Wu H, Mao X. Effect of Mg on Inclusion and High Cycle Fatigue Behavior in Titanium Microalloyed Beam Steel. Metals. 2023; 13(4):760. https://doi.org/10.3390/met13040760
Chicago/Turabian StyleGao, Zhijun, Guangfei Pan, Shuize Wang, Yu Song, Honghui Wu, and Xinping Mao. 2023. "Effect of Mg on Inclusion and High Cycle Fatigue Behavior in Titanium Microalloyed Beam Steel" Metals 13, no. 4: 760. https://doi.org/10.3390/met13040760
APA StyleGao, Z., Pan, G., Wang, S., Song, Y., Wu, H., & Mao, X. (2023). Effect of Mg on Inclusion and High Cycle Fatigue Behavior in Titanium Microalloyed Beam Steel. Metals, 13(4), 760. https://doi.org/10.3390/met13040760