The Effect of Cu Addition on Corrosion Resistance of Al-Si-Mg-Cr Alloy
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Hardness
3.2. Open Circuit Potential
3.3. Immersion Weight Loss
3.4. Microstructures before and after Immersion by SEM and EDS
3.5. Microstructural Observation by TEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Itoh, G.; Suzuki, T.; Horikawa, K. Effects of alloy composition and quenching rate on the bendability in Al-Mg-Si alloys. In Materials Science Forum; Trans Tech Publications Ltd.: Zurich, Switzerland, 2002; pp. 1193–1198. [Google Scholar]
- Wang, S.; Dong, L.; Han, X.; Fan, Y.; Chen, B. Orientations and interfaces between α′-Al13Cr4Si4 and the matrix in Al-Si-Cr-Mg alloy. Mater. Charact. 2020, 160, 110096. [Google Scholar] [CrossRef]
- Marioara, C.; Andersen, S.; Stene, T.; Hasting, H.; Walmsley, J.; Van Helvoort, A.; Holmestad, R. The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 2007, 87, 3385–3413. [Google Scholar] [CrossRef]
- Grilli, R.; Baker, M.A.; Castle, J.E.; Dunn, B.; Watts, J.F. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution. Corros. Sci. 2010, 52, 2855–2866. [Google Scholar] [CrossRef]
- Eckermann, F.; Suter, T.; Uggowitzer, P.J.; Afseth, A.; Schmutz, P. The influence of MgSi particle reactivity and dissolution processes on corrosion in Al–Mg–Si alloys. Electrochim. Acta 2008, 54, 844–855. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, X.; Chen, B. Corrosion behavior of 2198 Al-Cu-Li alloy in different aging stages in 3.5 wt% NaCl aqueous solution. J. Mater. Res. 2018, 33, 1011–1022. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Chen, B. Effect of aging on the corrosion behavior of 6005 Al alloys in 3.5 wt% NaCl aqueous solution. J. Mater. Res. 2018, 33, 1830–1838. [Google Scholar] [CrossRef]
- Fang, L.; Zheng, J.-x.; Xia, C.; Xu, X.-s.; Bin, C. Study on corrosion resistance of artificially aged 7075 aluminium alloy by using Cs-corrected STEM. Trans. Nonferrous Met. Soc. China 2022, 32, 2828–2837. [Google Scholar]
- Wang, S.-S.; Huang, I.-W.; Yang, L.; Jiang, J.-T.; Chen, J.-F.; Dai, S.-L.; Seidman, D.N.; Frankel, G.; Zhen, L. Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys. J. Electrochem. Soc. 2015, 162, C150–C160. [Google Scholar] [CrossRef]
- Marlaud, T.; Malki, B.; Henon, C.; Deschamps, A.; Baroux, B. Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys. Corros. Sci. 2011, 53, 3139–3149. [Google Scholar] [CrossRef]
- Zhao, X.; Frankel, G.S. Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique. Corros. Sci. 2007, 49, 920–938. [Google Scholar] [CrossRef]
- Meng, Q.; Frankel, G. Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. J. Electrochem. Soc. 2004, 151, B271–B283. [Google Scholar] [CrossRef]
- Buchheit, R.; Martinez, M.; Montes, L. Evidence for Cu Ion Formation by Dissolution and Dealloying the Al2CuMg Intermetallic Compound in Rotating Ring-Disk Collection Experiments. J. Electrochem. Soc. 2000, 147, 119–124. [Google Scholar] [CrossRef]
- Lunarska, E.; Trela, E.; Szklarska-Smialowska, Z. Pitting corrosion of powder metallurgy AlZnMg alloys. Corrosion 1987, 43, 219–228. [Google Scholar] [CrossRef]
- Chen, B.; Dong, L.; Hu, B.; Liu, Z. The Effect of Cu Addition on the Precipitation Sequence in the Al-Si-Mg-Cr Alloy. Materials 2022, 15, 8221. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Liu, M.; Atrens, A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros. Sci. 2010, 52, 579–588. [Google Scholar] [CrossRef]
- ASTM Standard G102-89; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International: West Conshohocken, PA, USA, 2015.
- Zandbergen, H.W. Structure Determination of Mg5Si6 Particles in Al by Dynamic Electron Diffraction Studies. Science 1997, 277, 1221–1225. [Google Scholar] [CrossRef]
- Andersen, S.J.; Zandbergen, H.W.; Jansen, J.; Traeholt, C.; Tundal, U.; Reiso, O. The crystal structure of the β″ phase in Al-Mg-Si alloys. Acta Mater. 1998, 46, 3283–3298. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, K.; Zheng, J.K.; Chen, B. Atomic-scale characterization of interfaces between 2A70 aluminum alloy matrix and Cu-enriched layer after electropolishing. Mater. Charact. 2019, 150, 150–154. [Google Scholar] [CrossRef]
Element | Si | Mg | Cr | Cu | Fe | Al |
---|---|---|---|---|---|---|
Al-Si-Mg-Cr | 7 | 0.3 | 0.3 | 0 | <0.15 | Bal. |
Al-Si-Mg-Cr-Cu | 7 | 0.3 | 0.3 | 1.5 | <0.15 | Bal. |
Samples | Ageing Time (h) | Ecorr (mVSCE) | Icorr (μA/cm2) | Rp (kΩ) | CR (mm·y−1) |
---|---|---|---|---|---|
Al-7%Si-0.3%Mg-0.3%Cr | 1 h | −1.0824 | 4.1637 | 4.3231 | 0.04533 |
2 h | −1.1374 | 5.4485 | 3.3037 | 0.05932 | |
6 h | −1.2002 | 8.7132 | 2.0658 | 0.09487 | |
9 h | −1.0892 | 4.1056 | 4.3843 | 0.04470 | |
12 h | −1.0527 | 3.6887 | 4.8798 | 0.04016 | |
Al-7%Si-0.3%Mg-0.3%Cr-1.5%Cu | 1 h | −0.6306 | 9.6664 | 1.8621 | 0.10525 |
2 h | −0.7024 | 10.5875 | 1.7001 | 0.11528 | |
6 h | −0.7048 | 11.0477 | 1.6293 | 0.12029 | |
12 h | −0.7103 | 14.0117 | 1.2846 | 0.15256 | |
16 h | −0.7064 | 13.6173 | 1.3218 | 0.14827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Dong, L.; Hu, B.; Chen, B. The Effect of Cu Addition on Corrosion Resistance of Al-Si-Mg-Cr Alloy. Metals 2023, 13, 795. https://doi.org/10.3390/met13040795
Wang Z, Dong L, Hu B, Chen B. The Effect of Cu Addition on Corrosion Resistance of Al-Si-Mg-Cr Alloy. Metals. 2023; 13(4):795. https://doi.org/10.3390/met13040795
Chicago/Turabian StyleWang, Zhige, Liang Dong, Bin Hu, and Bin Chen. 2023. "The Effect of Cu Addition on Corrosion Resistance of Al-Si-Mg-Cr Alloy" Metals 13, no. 4: 795. https://doi.org/10.3390/met13040795
APA StyleWang, Z., Dong, L., Hu, B., & Chen, B. (2023). The Effect of Cu Addition on Corrosion Resistance of Al-Si-Mg-Cr Alloy. Metals, 13(4), 795. https://doi.org/10.3390/met13040795