Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Modification Methods of Clay
2.2.2. PCN Preparation Methods
2.2.3. Characterization Methods
2.2.4. Electrochemical Methods
3. Results and Discussion
3.1. Characterization Methods
3.1.1. FT-IR Analysis
3.1.2. X-ray Diffraction
X-ray Diffraction of RC, NaC, and OC
X-ray Diffraction of PS, OC, and PCN
3.1.3. TEM Analysis
3.2. Electrochemical Methods
3.2.1. Electrochemical Impedance Spectroscopy (EIS)
3.2.2. EFM Method
3.2.3. Potentiodynamic Polarization (Tafel Plots)
Sample Code | ECorr (mV) | ICorr (µA/cm2) | CR (mpy) | Chi.sq. | %PE | |
---|---|---|---|---|---|---|
Bare C-steel | −631 | 1.46 × 102 | 6.87 | 2.55 × 10−2 | - | |
PS | −515 | 3.89 × 10−1 | 1.79 ×10−2 | 1.20 | - | |
CCIn | 1% PCN | −431 | 7.23 × 10−2 | 3.32 ×10−3 | 2.38 | 81.41 |
3% PCN | −568 | 1.34 × 10−1 | 6.12 ×10−3 | 4.48 | 65.55 | |
5% PCN | −561 | 9.20 × 10−2 | 4.23 × 10−3 | 2.29 | 76.35 | |
RCKh | 1% PCN | −425 | 1.52 × 10−1 | 6.99 × 10−3 | 3.93 × 10−2 | 60.93 |
3% PCN | −496 | 1.71 × 10−1 | 1.06 × 10−2 | 3.83 | 56.04 | |
5% PCN | −496 | 2.90 × 10−1 | 1.33 × 10−2 | 16.18 | 25.44 |
3.2.4. Comparison Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbol | Meaning | Symbol | Meaning |
RCKh | Raw Khulays clay | CEC | Cation-exchange Capacity |
CCIn | Commercial Indian clay | OCP | Open-circuit potential |
NaC | Sodium clay | ESS | Steady-state potential |
CPC | Cetylpyridinium clay | RCorr | Corrosion resistance |
OC | Organoclay | Cdl | Electrical double-layer capacitance |
PS/OC | Polystyrene organoclay nanocomposite | CCorr | Corrosion capacitance |
MMT | Montmorillonite | Rpo | Pore resistance |
PS | Polystyrene | CC | Coating capacitance |
EIS | Electrochemical impedance spectroscopy | %PE | % Protection efficiency |
EFM | Electrochemical frequency modulation | ICorr | Corrosion current density |
ECorr | Corrosion potential | CR | Corrosion rate |
References
- Zarras, P.; Stenger-Smith, J. Intelligent Coatings for Corrosion Control, 1st ed.; Butterworth Heinemann: Oxford, UK, 2015; pp. 59–91. [Google Scholar]
- Zaarei, D.; Sarabi, A.A.; Sharif, F.; Kassiriha, S.M. Structure, properties and corrosion resistivity of polymeric nanocomposite coatings based on layered silicates. J. Coat. Technol. Res. 2008, 5, 241–249. [Google Scholar] [CrossRef]
- Hang, T.; Truc, T.X.; Olivier, T.A.; Vandermiers, M.G.; Guérit, C.; Pébre, N. Corrosion protection mechanisms of carbon steel by an epoxy resin containing indole-3 butyric acid modified clay. Prog. Org. Coats. 2010, 69, 410–416. [Google Scholar] [CrossRef]
- Piromruen, P.; Kongparakul, S.; Prasassarakich, P. Synthesis of polyaniline/montmorillonite nanocomposites with an enhanced anticorrosive performance. Prog. Org. Coat. 2014, 77, 691–700. [Google Scholar] [CrossRef]
- Speight, J.G. Oil and Gas Corrosion Prevention; Gulfe Professional: Waltham, NY, USA, 2014; pp. 5–147. [Google Scholar]
- Emich, F. Engineering Chemistry, 1st ed.; Scientific International PVT. Ltd.: New Delhi, India, 2014; pp. 20–66. [Google Scholar]
- El-Sherik, A.M. Trends in Oil and Gas Corrosion Research and Technologies, 1st ed.; Woodhead Publishing Series in Energy; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 1–65. [Google Scholar]
- Niu, L.; Guo, R.; Tang, C.; Guo, H.; Chen, J. Surface characterization and corrosion resistance of fluoferrite conversion coating on carbon steel. Surf. Coat. Technol. 2016, 300, 110–117. [Google Scholar] [CrossRef]
- Sari, M.G.; Ramezanzadeh, B.; Shahbazi, M.; Pakdel, A.S. Influence of nanoclay particles modification by polyester-amide hyperbranched polymer on the corrosion protective performance of the epoxy nanocomposite. Corros. Sci. 2016, 92, 162–172. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, X.; Xin, Z.; Liu, J.; Zhang, Y. Polybenzoxazine/SiO2 nanocomposite coatings for corrosion protection of mild steel. Corros. Sci. 2014, 80, 269–275. [Google Scholar] [CrossRef]
- Kotal, M.; Bhowmick, K.A. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog. Polym. Sci. 2015, 51, 127–187. [Google Scholar] [CrossRef]
- Sattler, K.D. Handbook of Nanophysics: Functional Nanomaterials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 3–31. [Google Scholar]
- Heidarian, M.; Shishesaz, M.R.; Kassiriha, S.M.; Nematollahi, M. Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog. Org. Coats. 2010, 68, 180–188. [Google Scholar] [CrossRef]
- Shreir, L.L.; Jarman, R.A.; Burstein, G.T. Corrosion2: Corrosion Control, 3rd ed.; Newnws-Butterworths: London, UK, 1994; pp. 9:41–9:57. [Google Scholar]
- Roberge, P. Corrosion Engineering: Principles and Practice, 1st ed.; McGraw-Hill: New York, NY, USA, 2008; pp. 370–383. [Google Scholar]
- Navarchian, A.H.; Joulazadeh, M.; Karimi, F. Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces. Prog. Org. Coat. 2014, 77, 347–353. [Google Scholar] [CrossRef]
- Al Juhaiman, L.A.; Al-Enezi, D.A.; Mekhamer, W.K. Polystyrene/Organoclay Nanocomposites as Anticorrosive Coatings of C-Steel. Int. J. Electrochem. Sci. 2016, 11, 5618–5630. [Google Scholar] [CrossRef]
- Raju, A.; Lakshmi, V.; Prataap, R.K.V.; Resmi, V.G. Adduct modified nano-clay mineral dispersed polystyrene nanocomposites as advanced corrosion resistance coatings for aluminum alloys. Appl. Clay Sci. 2016, 126, 81–88. [Google Scholar] [CrossRef]
- Madhup, M.K.; Shah, N.K.; Parekh, N.R. Investigation and improvement of abrasion resistance, water vapor barrier and anticorrosion properties of mixed clay epoxy nanocomposite coating. Prog. Org. Coat. 2017, 102, 186–193. [Google Scholar] [CrossRef]
- Fontana, M. Corrosion Engineering, 3rd ed.; McGraw-Hill: New York, NY, USA, 1987; pp. 1–30. [Google Scholar]
- Bergaya, F.; Theng, B.; Lagaly, G. Handbook of Clay Science Part A: Fundamental, 2nd ed.; Developments in Clay Science; Elsevier Ltd.: Amsterdam, The Netherlands, 2006; pp. 100–427. [Google Scholar]
- Yeh, J.-M.; Chin, C.-P.; Chang, S. Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials. J. Appl. Polym. Sci. 2003, 88, 3264–3272. [Google Scholar] [CrossRef]
- Motlatle, A.M.; Sinha, S.; Scriba, M. Polyaniline-clay composite-containing epoxy coating with enhanced corrosion protection and mechanical properties. Synth. Met. 2018, 245, 102–110. [Google Scholar] [CrossRef]
- Truc, T.A.; Thuy, T.T.; Oanh, V.K.; Xuan Hang, T.T.; Nguyen, A.S.; Caussé, N.; Pébère, N. 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel. Surf. Interfaces 2019, 14, 26–33. [Google Scholar] [CrossRef]
- Alandis, N.M.; Aldayel, O.A.; Mekhemer, W.K.; Hefne, J.A.; Jokhab, H.A. Thermodynamic and Kinetic Studies for the Adsorption of Fe (III) and Ni (II) Ions From Aqueous Solution Using Natural Bentonite. J. Dispers. Sci. Technol. 2001, 31, 1–9. [Google Scholar] [CrossRef]
- Al Juhaiman, L.A.; Al-Enezi, D.A.; Mekhamer, W.K. Preparation and Characterization of Polystyrene/Organoclay Nanocomposites from Raw Clay. Dig. J. Nanomater. Biostructures 2016, 11, 105–114. [Google Scholar]
- Djomgoue, P.; Njopwouo, D. FT-IR Spectroscopy Applied for Surface Clays Characterization. J. Surf. Eng. Mater. Adv. Technol. 2013, 3, 275–282. [Google Scholar] [CrossRef]
- Madejova, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Developments in Clay Science: Infrared and Raman Spectroscopies of Clay Minerals; Gates, W.P., Kloprogge, J.T., Madejova, J.T., Bergaya, F., Eds.; Elsevier: Amsterdam, The Netherlands; Holland, MI, USA, 2017; Volume 8, pp. 107–149. [Google Scholar]
- Yuehong, M.; Jianxi, Z.; Hongping, H.; Peng, Y.; Wei, S.; Dong, L. Infrared investigation of organo-montmorillonites prepared from different surfactants. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 122–129. [Google Scholar] [CrossRef]
- Madejova, J.; Bujdak, J.; Janek, M.; Komadel, P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochim. Acta Part A 1998, 54, 1397–1406. [Google Scholar] [CrossRef]
- Tabak, A.; Afsin, B.; Aygun, S.F.; Koksal, E. Structural Characteristics of Organo-Modified Bentoonites of Different Origin. J. Thermal Anal. Calorim. 2007, 87, 375–381. [Google Scholar] [CrossRef]
- Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V.; Vázquez-Torres, H.; Garfias-Mesías, L.F.; Paul, D.R. Thermal degradation of commercially available organoclays studied by TGA–FTIR. Thermochim. Acta 2007, 457, 92–102. [Google Scholar] [CrossRef]
- Krishna, S.V.; Pugazhenthi, G. Properties and thermal degradation kinetics of polystyrene/organoclaynanocomposites synthesized by solvent blending method: Effect of processing conditions and organoclay loading. J. Appl. Polym. Sci. 2011, 120, 1322–1336. [Google Scholar] [CrossRef]
- Alshabanat, M.; Al-arrash, A.; Mekhamer, W. Polystyrene/Montmorillonite Nanocomposites: Study of the Morphology and Effects of Sonication Time on Thermal Stability. J. Nanomater. 2013, 12, 2–12. [Google Scholar] [CrossRef]
- Tyagi, B.; Chudasama, C.D.; Jasra, R.V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta Part A 2006, 64, 273–278. [Google Scholar] [CrossRef]
- Li, X.; Kang, T.; Cho, W.; Lee, J.; Ha, C. Preparation and Characterization of Poly (butyleneterephthalate)/Organoclay Nanocomposites. Macromol. Mater. Eng. 2001, 22, 1306–1312. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, L.; Zhu, J.; Xing, B. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environ. Sci. Technol. 2005, 39, 6093–6100. [Google Scholar] [CrossRef]
- Xi, Y.; Ding, Z.; Frost, R.L. Structure of organo-clays an X-ray diffraction and thermogravimetric analysis study. J. Colloid Interf. Sci. 2004, 277, 116–120. [Google Scholar] [CrossRef]
- Giannakas, A.; Spanos, C.G.; Kourkoumelis, N.; Vaimakis, T.; Ladavos, A. Preparation, characterization and water barrier properties of PS/organo-montmorillonite nanocomposites. Eur. Polym. J. 2008, 44, 3915–3921. [Google Scholar] [CrossRef]
- Obot, I.B.; Onyeachu, I.B. Electrochemical frequency modulation (EFM) technique: Theory and recent practical applications in corrosion research. J. Mol. Liq. 2018, 249, 83–96. [Google Scholar] [CrossRef]
- Abdel-rehim, S.S.; Khaled, K.F.; Abd-elshafi, N.S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. Electrochim. Acta 2006, 51, 3269–3277. [Google Scholar] [CrossRef]
- Chen-Yang, Y.W.; Yang, H.C.; Li, G.J.; Li, Y.K. Thermal and anticorrosive properties of polyurethane/clay nanocomposites. J. Polym. Res. 2005, 11, 275–283. [Google Scholar] [CrossRef]
- Olad, A.; Rashidzadeh, A. Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog. Org. Coat. 2008, 62, 293–298. [Google Scholar] [CrossRef]
- Olad, A.; Rashidzadeh, A.; Amini, M. Preparation of polypyrrole nanocomposites with organophilic and hydrophilic montmorillonite and investigation of their corrosion protection on iron. Adv. Polym. Technol. 2013, 32, 21337. [Google Scholar] [CrossRef]
- Yeh, J.; Liou, S.; Lin, C.; Chang, Y.; Yu, Y.; Cheng, C. Effective Enhancement of Anticorrosive Properties of Polystyrene by Polystyrene–Clay Nanocomposite Materials. J. Appl. Polym. Sci. 2003, 92, 1970–1976. [Google Scholar] [CrossRef]
- Nematollahi, M.; Heidarian, M.; Peikari, M.; Kassiriha, S.M.; Arianpouya, N.; Esmaeilpour, M. Comparison between the effect of nanoglass flake and montmorillonite organoclay on corrosion performance of epoxy coating. Corros. Sci. 2010, 52, 1809–1817. [Google Scholar] [CrossRef]
- Huang, H.Y.; Huang, T.C.; Yeh, T.C.; Tsai, C.Y.; Lai, C.L.; Tsai, M.H.; Chou, Y.C. Advanced anticorrosive materials prepared from amine-capped aniline trimer-based electroactive polyimide-clay nanocomposite materials with synergistic effects of redox catalytic capability and gas barrier properties. Polymer 2011, 52, 2391–2400. [Google Scholar] [CrossRef]
- Chang, K.C.; Chen, S.T.; Lin, H.F.; Lin, C.Y.; Huang, H.H.; Yeh, J.M.; Yu, Y.H. Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements. Eur. Polym. J. 2008, 44, 13–23. [Google Scholar] [CrossRef]
Sample Code | EIS Parameters | ||||
---|---|---|---|---|---|
Rct (Ω.cm2) | CCorr (F/cm2) | Rpo (Ω.cm2) | Cc (F/cm2) | ||
Bare C-steel | 1.29 × 102 | 8.61 × 10−3 | - | - | |
Pure PS | 5.24 × 105 | 4.79 × 10−6 | 7.59 × 105 | 6.81 × 10−10 | |
CCIn | 1% PCN | 6.26 × 106 | 1.73 × 10−7 | 1.21 × 105 | 2.72 × 10−10 |
3% PCN | 5.25 × 106 | 9.81 × 10−7 | 2.21 × 105 | 2.89 × 10−10 | |
5% PCN | 4.30 × 106 | 1.99 × 10−6 | 2.59 × 104 | 3.60 × 10−10 | |
RCKh | 1% PCN | 2.46 × 106 | 2.71 × 10−8 | 4.84 × 105 | 2.98 × 10−10 |
3% PCN | 1.31 × 106 | 6.01 × 10−8 | 1.88 × 105 | 2.83 × 10−10 | |
5% PCN | 8.83 × 105 | 1.48 × 10−7 | 8.43 × 104 | 2.84 × 10−10 |
Sample Code | ICorr (µA/cm2) | CR (mpy) | CF2 | CF3 | %PE | |
---|---|---|---|---|---|---|
Bare C-steel | 3.65 × 102 | 17.17 | 2.75 | - | - | |
PS | 8.43 × 10−2 | 3.87 × 10−3 | 1.30 | - | - | |
CCIn | 1% PCN | 1.29 × 10−2 | 5.92 × 10−4 | 2.36 | 1.34 | 84.69 |
3% PCN | 1.96 × 10−2 | 8.98 × 10−4 | 1.23 | 1.75 | 76.75 | |
5% PCN | 1.97 × 10−2 | 9.07 × 10−4 | 4.84 | 1.14 | 76.63 | |
RCKh | 1% PCN | 1.56 × 10−2 | 7.16 × 10−4 | 1.86 | 1.53 | 81.49 |
3% PCN | 1.56 × 10−2 | 7.17 × 10−3 | 2.01 | 1.70 | 81.49 | |
5% PCN | 2.61 × 10−2 | 1.20 × 10−3 | 1.16 | 1.34 | 69.04 |
Code | Ref. No. | Polymer | ICorr (A/cm2) |
---|---|---|---|
Previous studies | Chen-Yang et al. [42] | Polyurethan | 3.12 × 10−7 |
Navarchian et al. [16] | Polyaniline | 4.67 × 10−7 | |
Motlatle et al. [23] | Polyaniline | 2.10 × 10−4 | |
Piromruen et al. [4] | Polyaniline | 1.69 × 10−5 | |
Olad and Rashidzadeh [43] | Polyaniline | 2.58 × 10−6 | |
Olad et al. [44] | Polypyrrole | 6.30 × 10−5 | |
Raju et al. [18] | Polystyrene | 2.40 × 10−6 | |
Yeh et al. [45] | Polystyrene | 1.40 × 10−7 | |
Nematollahi et al. [46] | Epoxy | 4.96 × 10−7 | |
Huang et al. [47] | Polyimide | 1.09 × 10−6 | |
Chang et al. [48] | PMMA | 1.28 × 10−6 | |
Present study | PCN (RCKh) | Polystyrene | 1.52 × 10−7 |
PCN (CCIn) | Polystyrene | 7.23 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howyan, N.A.; Al Juhaiman, L.A.; Mekhamer, W.K.; Altilasi, H.H. Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay. Metals 2023, 13, 879. https://doi.org/10.3390/met13050879
Howyan NA, Al Juhaiman LA, Mekhamer WK, Altilasi HH. Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay. Metals. 2023; 13(5):879. https://doi.org/10.3390/met13050879
Chicago/Turabian StyleHowyan, Nashwa A., Layla A. Al Juhaiman, Waffa K. Mekhamer, and Hissah H. Altilasi. 2023. "Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay" Metals 13, no. 5: 879. https://doi.org/10.3390/met13050879
APA StyleHowyan, N. A., Al Juhaiman, L. A., Mekhamer, W. K., & Altilasi, H. H. (2023). Comparative Study of Protection Efficiency of C-Steel Using Polystyrene Clay Nanocomposite Coating Prepared from Commercial Indian Clay and Local Khulays Clay. Metals, 13(5), 879. https://doi.org/10.3390/met13050879