Novel Approach to Prepare Magnesium and Mg-Al Alloy from Magnesia by Using the Closed Microwave Aluminothermic Method
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Materials
2.2. Methods
2.2.1. Mechanically Activated Samples Preparation
2.2.2. The Closed Microwave Aluminothermic Method
2.3. Sample Analysis
3. Results and Discussion
3.1. Thermodynamic Analysis of the Reduction Reaction
3.2. The Calculation of Microwave Heating Field for Reactor and Sample
3.3. The Reduction of MgO by Al-C Powders under Microwave Irradiation
3.4. The Reduction of MgO by Al-CaC2 Powders under Microwave Irradiation
3.5. Formation Mechanism of Mg-Al Alloy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurzynowski, T.; Pawlak, A.; Smolina, I. The potential of SLM technology for processing magnesium alloys in aerospace industry. Archiv. Civ. Mech. Eng. 2020, 20, 23. [Google Scholar] [CrossRef]
- Kubásek, J.; Minárik, P.; Hosová, K.; Šašek, S.; Knapek, M.; Veselý, J.; Stráská, J.; Dvorský, D.; Čavojský, M.; Vojtěch, D. Novel magnesium alloy containing Y, Gd and Ca with enhanced ignition temperature and mechanical properties for aviation applications. J. Alloys Compd. 2021, 877, 160089. [Google Scholar] [CrossRef]
- Weiler, J.P. Exploring the concept of castability in magnesium die-casting alloys. J. Magnes. Alloy. 2021, 9, 102–111. [Google Scholar] [CrossRef]
- Korenko, M.; Larson, C.; Blood, K.; Palumbo, R.; Nudehi, S.; Diver, R.; Blood, D.; Šimko, F.; Venstrom, L.J. Technical and economic evaluation of a solar thermal MgO electrolysis process for magnesium production. Energy 2017, 135, 182–194. [Google Scholar] [CrossRef]
- Lee, T.H.; Okabe, T.H.; Lee, J.Y.; Kim, Y.M.; Kang, J. Development of a novel electrolytic process for producing high-purity magnesium metal from magnesium oxide using a liquid tin cathode. J. Magnes. Alloy. 2021, 9, 1644–1655. [Google Scholar] [CrossRef]
- Li, R.; Liu, F.; Zhong, J.; Yang, P.; Zhang, S. Experimental Study of Magnesium (Mg) Production by an Integrated Calcination and Silicothermic Reduction Short Process. Met. Mater. Trans. B 2021, 52, 558–569. [Google Scholar] [CrossRef]
- Fu, D.X.; Zhang, T.A.; Guan, L.K.; Dou, Z.H.; Wen, M. Magnesium production by silicothermic reduction of dolime in pre-prepared dolomite pellets. JOM 2016, 68, 3208–3213. [Google Scholar] [CrossRef]
- Gebensleben, T.; Becker, V.; Becker, J.A. Transient light emission from the silicothermic reduction of magnesium oxide with potential for monitoring intermediate compound formation and decay. SN Appl. Sci. 2020, 2, 401. [Google Scholar] [CrossRef]
- Li, R.B.; Zhang, S.J.; Guo, L.J.; Wei, J.J. Numerical study of magnesium (Mg) production by the Pidgeon process: Impact of heat transfer on Mg reduction process. Metall. Mater. Trans. B 2014, 45, 236–250. [Google Scholar] [CrossRef]
- Gorji, A.; Panjepour, M.; Ahmadian, M. Study of morphology and magnesium purity, formed by vapor phase through silicothermic reduction. Met. Mater Trans. B 2018, 49, 2435–2443. [Google Scholar] [CrossRef]
- Xie, W.D.; Chen, J.; Wang, H.; Zhang, X.; Peng, X.D.; Yang, Y. Kinetics of magnesium preparation by vacuum-assisted carbothermic reduction method. Rare Met. 2016, 35, 192–197. [Google Scholar] [CrossRef]
- Brooks, G.; Trang, S.; Witt, P.; Khan, M.N.H.; Nagle, M. The carbothermic route to magnesium. JOM 2006, 58, 51–55. [Google Scholar] [CrossRef]
- Tian, Y.; Qu, T.; Yang, B.; Dai, Y.N.; Xu, B.Q.; Geng, S. Behavior analysis of CaF 2 in magnesia carbothermic reduction process in vacuum. Met. Mater. Trans. B 2012, 43, 657–661. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.Q.; Ma, H.W.; Zhou, W.G. Mechanism of calcium fluoride acceleration for vacuum carbothermic reduction of magnesia. Met. Mater. Trans. B 2016, 47, 837–845. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.Q.; Yang, C.B.; Yang, B.; Qu, T.; Liu, H.X.; Dai, Y.N.; Liu, D.C. Analysis of magnesia carbothermic reduction process in vacuum. Mater Trans. B 2014, 45, 1936–1941. [Google Scholar] [CrossRef]
- Xiong, N.; Tian, Y.; Chen, X.; Li, K.; Xu, B.; Yang, B.; Dai, Y. Dynamic simulation and experimental study of magnesia formed between magnesium vapor and CO under vacuum. JOM 2019, 71, 2791–2797. [Google Scholar] [CrossRef]
- Yang, C.B.; Tian, Y.; Qu, T.; Yang, B.; Xu, B.Q.; Dai, Y.N. Production of metallic nanopowders (Mg, Al) by solar carbothermal reduction of their oxides at low pressure. J. Magnes. Alloy. 2014, 2, 50–58. [Google Scholar] [CrossRef]
- Hischier, I.; Chubukov, B.A.; Wallace, M.A.; Fisher, R.P.; Palumbo, A.W.; Rowe, S.C.; Groehn, A.J.; Weimer, A.W. A novel experimental method to study metal vapor condensation/oxidation: Mg in CO and CO2 at reduced pressures. Sol. Energy 2016, 139, 389–397. [Google Scholar] [CrossRef]
- Fu, D.X.; Feng, N.X.; Wang, Y.W.; Peng, J.P.; Di, Y.Z. Kinetics of extracting magnesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction. Nonferrous Met. Soc. China 2014, 24, 839–847. [Google Scholar] [CrossRef]
- Fu, D.X.; Wang, Y.W.; Peng, J.P.; Di, Y.Z.; Tao, S.H.; Feng, N.X. Mechanism of extracting magenesium from mixture of calcined magnesite and calcined dolomite by vacuum aluminothermic reduction. Nonferrous Met. Soc. China 2014, 24, 2677–2686. [Google Scholar] [CrossRef]
- Wang, Y.; You, J.; Peng, J.; Di, Y. Production of magnesium by vacuum aluminothermic reduction with magnesium aluminate spinel as a by-product. JOM 2016, 68, 1728–1736. [Google Scholar] [CrossRef]
- Zhang, T.; Du, S.M.; Sun, W.C.; Zhang, J.M.; Niu, L.B.; Zheng, B.; Hua, X.H. Novel Method to Prepare Magnesium by Aluminothermic Reduction of Magnesia and Calcium Hydroxide at Normal Atmosphere, 1223 K (950 °C). Met. Mater. Trans. B 2017, 48, 488–496. [Google Scholar] [CrossRef]
- Zhang, T. Investigation on the reaction between MgO–CaO–CaF2 and Al–C powders to extract magnesium under atmospheric pressure. J. Magnes. Alloy. 2019, 7, 328–334. [Google Scholar] [CrossRef]
- Wulandari, W.; Brooks, G.A.; Rhamdhani, M.A.; Monaghan, B.J. Kinetic analysis of silicothermic process under flowing argon atmosphere. Can. Metall. Q. 2014, 53, 17–25. [Google Scholar] [CrossRef]
- Che, Y.; Hao, Z.; Zhu, J.; Fu, Z.; He, J.; Song, J. Kinetic mechanism of magnesium production by silicothermy in argon flowing. Thermochim. Acta 2019, 681, 178397. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, C.; Song, J.; Shang, X.; Chen, X.; He, J. The silicothermic reduction of magnesium in flowing argon and numerical simulation of novel technology. J. Magnes. Alloy. 2020, 8, 752–760. [Google Scholar] [CrossRef]
- Jordon, J.B.; Miller, V.; Joshi, V.V.; Neelameggham, N.R. (Eds.) Magnesium Technology; Springer: Cham, Switzerland, 2020; pp. 303–308. [Google Scholar]
- Guo, J.; Fu, D.; Han, J.; Ji, Z.; Wang, Y.; Zhang, T. The effect of calcium fluoride on extracting magnesium from magnesite and calcium carbonate by silicothermal reduction in flowing argon. J. Min. Metall. B Metall. 2020, 56, 379–386. [Google Scholar] [CrossRef]
- Rao, K.J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P.A. Synthesis of inorganic solids using microwaves. Chem. Mater. 1999, 11, 882–895. [Google Scholar] [CrossRef]
- Nandihalli, N.; Gregory, D.H.; Mori, T. Energy-Saving Pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwave-Assisted, Solution-Based, and Powder Processing. Adv. Sci. 2022, 9, 2106052. [Google Scholar] [CrossRef]
- Peng, Z.; Hwang, J.Y. Microwave-assisted metallurgy. Int. Mater. Rev. 2015, 60, 30–63. [Google Scholar] [CrossRef]
- Wen, T.; Zhao, Y.; Xiao, Q.; Ma, Q.; Kang, S.; Li, H.; Song, S. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results Phys. 2017, 7, 2594–2600. [Google Scholar] [CrossRef]
- Forster, J.; Pickles, C.A.; Elliott, R. Microwave carbothermic reduction roasting of a low grade nickeliferous silicate laterite ore. Miner. Eng. 2016, 88, 18–27. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, T.A.; Lü, G.; Zhang, Y.; Liu, Y.; Zhang, W. Effects of microwave roasting on the kinetics of extracting vanadium from vanadium slag. JOM 2016, 68, 577–584. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, T.A.; Dou, Z.; Liu, J.; Tian, J. Influence of microwave heating on the extractions of fluorine and Rare Earth elements from mixed rare earth concentrate. Hydrometallurgy 2016, 162, 104–110. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Morita, K. Removal of B from Si by solidification refining with Si-Al melts. Mater. Trans. 2005, 44, 722–726. [Google Scholar] [CrossRef]
- Wada, Y.; Fujii, S.; Suzuki, E.; Maitani, M.M.; Tsubaki, S.; Chonan, S.; Fukui, M.; Inazu, N. Smelting magnesium metal using a microwave Pidgeon method. Sci. Rep. 2017, 7, 46512–46518. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Suzuki, E.; Inazu, N.; Tsubaki, S.; Maeda, M.; Wada, Y. Study on Metal Smelting Process Under Microwave Irradiation. In Magnesium Technology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 171–172. [Google Scholar]
- Bugdayci, M.; Turan, A.; Alkan, M.; Yucel, O. Effect of reductant type on the metallothermic magnesium production process. High Temp. Mater. Process. 2018, 37, 1–8. [Google Scholar] [CrossRef]
- Zhang, D.L. Processing of advanced materials using high-energy mechanical milling. Progress Mater. Sci. 2004, 49, 537–560. [Google Scholar] [CrossRef]
- Nepapushev, A.A.; Kirakosyan, K.G.; Moskovskikh, D.O.; Kharatyan, S.L.; Rogachev, A.S.; Mukasyan, A.S. Influence of high-energy ball milling on reaction kinetics in the Ni-Al system: An electrothermorgaphic study. Int. J. Self-Propagating High-Temp. Synth. 2015, 24, 21–28. [Google Scholar] [CrossRef]
Height of Sample (mm) | The Electric Field Intensity Value (V/m) | The Magnetic Field Intensity Value (A/m) | ||
---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |
10 | 113.28 | 414.16 | 0.06751 | 1.2931 |
20 | 635.27 | 1649.5 | 0.36769 | 6.1837 |
30 | 137.94 | 532.01 | 0.46601 | 1.3024 |
Alloying Elements | Content (Wt%) | Content (At%) |
---|---|---|
Mg | 25.3 | 27.30 |
Al | 74.7 | 72.70 |
Alloying Elements | Content (Wt%) | Content (At%) | |
---|---|---|---|
Figure 8E | Mg | 41.89 | 44.54 |
Al | 58.08 | 55.46 | |
Figure 8G | Mg | 5.96 | 6.57 |
Al | 94.04 | 93.43 |
Element | Sample before Reaction | Surface Atomic Percent Ratio (At%) | Subsurface Atomic Percent Ratio (At%) | Center |
---|---|---|---|---|
C K | 17.70 | 44.13 | 45.78 | 48.56 |
O K | 26.30 | 32.05 | 29.46 | 27.62 |
MgK | 25.36 | 03.60 | 03.89 | 02.84 |
AlK | 28.19 | 12.26 | 12.91 | 11.94 |
CaK | 8.46 | 07.96 | 07.95 | 09.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Wang, M.; Niu, L.; Zhang, J.; Zhang, H.; Zhang, M. Novel Approach to Prepare Magnesium and Mg-Al Alloy from Magnesia by Using the Closed Microwave Aluminothermic Method. Metals 2023, 13, 905. https://doi.org/10.3390/met13050905
Zhang T, Wang M, Niu L, Zhang J, Zhang H, Zhang M. Novel Approach to Prepare Magnesium and Mg-Al Alloy from Magnesia by Using the Closed Microwave Aluminothermic Method. Metals. 2023; 13(5):905. https://doi.org/10.3390/met13050905
Chicago/Turabian StyleZhang, Teng, Miao Wang, Libin Niu, Jumei Zhang, Huihui Zhang, and Mengchun Zhang. 2023. "Novel Approach to Prepare Magnesium and Mg-Al Alloy from Magnesia by Using the Closed Microwave Aluminothermic Method" Metals 13, no. 5: 905. https://doi.org/10.3390/met13050905
APA StyleZhang, T., Wang, M., Niu, L., Zhang, J., Zhang, H., & Zhang, M. (2023). Novel Approach to Prepare Magnesium and Mg-Al Alloy from Magnesia by Using the Closed Microwave Aluminothermic Method. Metals, 13(5), 905. https://doi.org/10.3390/met13050905