T15 High Speed Steels Produced by High-Temperature Low-Pressure Short-Time Vacuum Hot-Pressing Combined with Subsequent Diffusion-Bonding Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of T15 Prealloyed Powders
2.2. Phase and Microstructure Analysis of the Consolidated T15
2.3. Density Measurement of the Consolidated T15
2.4. Mechanical Property Testing of the Consolidated T15
3. Results
3.1. Composition and Morphology of T15 Prealloyed Powders
3.2. XRD Results
3.3. Microstructures in VHP T15 HSSs
3.4. Microstructures in VHP+DBT-ed T15 HSSs
3.5. Density and Hardness
3.6. Three-Point Bend Fracture Strength
3.7. Fractured Surfaces of Three-Point Bend Specimens
4. Discussion
4.1. Microstructural Evolution during VHP and DBT
4.2. Hardness of Consolidated T15 HSSs
4.3. Three-Point Bend Fracture Strength of Consolidated T15 HSSs
4.4. Proposals for Modification of Technological Parameters during VHP and DBT
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gsellmann, M.; Klünsner, T.; Mitterer, C.; Marsoner, S.; Leitner, H.; Boumpakis, A.; Skordaris, G.; Maier-Kiener, V.; Ressel, G. Influence of matrix composition and MC carbide content on damage behaviour of TiN-coated high speed steel due to cyclic shear and compression load. Surf. Coat. Technol. 2022, 442, 128546. [Google Scholar] [CrossRef]
- Leitner, H.; Clemens, H.; Primig, S. On the evolution of secondary hardening carbides during continuous versus isothermal heat treatment of high speed steel HS 6-5-2. Mater. Charact. 2016, 120, 323–330. [Google Scholar]
- Zhou, X.F.; Fang, F.; Jiang, J.Q.; Zhu, W.L.; Xu, H.X. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment. Mater. Sci. Technol. 2012, 28, 1499–1504. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Loh, N.H.; Khor, K.A.; Tor, S.B. Microstructure evolution during sintering of injection molded M2 high speed steel. Mater. Sci. Eng. A 2000, 293, 46–55. [Google Scholar] [CrossRef]
- Xu, L.; Wei, S.; Xiao, F.; Zhou, H.; Zhang, G.; Li, J. Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content. Wear 2017, 376, 968–974. [Google Scholar] [CrossRef]
- Lu, L.; Hou, L.G.; Zhang, J.X.; Wang, H.B.; Cui, H.; Huang, J.F.; Zhang, Y.A.; Zhang, J.S. Improved the microstructures and properties of M3: 2 high-speed steel by spray forming and niobium alloying. Mater. Charact. 2016, 117, 1–8. [Google Scholar] [CrossRef]
- Xu, H.; Shen, Y.; Cao, R.; Li, W.; Pang, Y.; Che, H.; Wang, T.; Liang, C.; Liu, S.; Qin, W.; et al. Effect of Different Rolling Passes on Microstructure and Mechanical Properties of M390 Powder Metallurgy High-Speed Steel. J. Mater. Eng. Perform. 2022, 31, 9650–9659. [Google Scholar] [CrossRef]
- Yu, X.F.; Zheng, D.Y.; Yang, X.F.; Wang, S.Y.; An, M.; Yan, G.B.; Xia, Y.Z.; Xing, F. Effect of carbide precipitation behavior at high temperatures on microstructure and mechanical properties of M50 steel. J. Mater. Res. Technol. 2022, 18, 1155–1165. [Google Scholar] [CrossRef]
- Li, T.; Zhong, Y.; Qu, S.; Zhang, Z. Influences of the characteristics of carbide particles on the rolling contact fatigue life of rare earth modified, highly clean bearing steel. Eng. Fail. Anal. 2023, 143, 106888. [Google Scholar] [CrossRef]
- Gimenez, S.; Zubizarreta, C.; Trabadelo, V.; Iturriza, I. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions. Mater. Sci. Eng. A 2008, 480, 130–137. [Google Scholar] [CrossRef]
- Roberts, G.; Krauss, G.; Kennedy, R. Tool Steels, 5th ed.; ASM International: Materials Park, OH, USA, 1998. [Google Scholar]
- Boccalini, M.; Goldenstein, H. Solidification of high speed steels. Int. Mater. Rev. 2001, 46, 92–115. [Google Scholar] [CrossRef]
- Chen, P.; Liu, Y.; Ping, X.; Li, W.; Yi, Y. Influence mechanism of Y addition on microstructure, adsorbability, mechanical properties of as-cast high speed steel. Mater. Sci. Eng. A 2023, 863, 144520. [Google Scholar] [CrossRef]
- Wieβner, M.; Leisch, M.; Emminger, H.; Kulmburg, A. Phase transformation study of a high speed steel powder by high temperature X-ray diffraction. Mater. Charact. 2008, 59, 937–943. [Google Scholar] [CrossRef]
- Trabadelo, V.; Giménez, S.; Iturriza, I. Development of powder metallurgy T42 high speed steel for structural applications. J. Mater. Process. Technol. 2008, 202, 521–527. [Google Scholar] [CrossRef]
- Kumar, K.S.; Lawley, A.; Koczak, M.J. Powder metallurgy T15 tool steel: Part I. Characterization of powder and hot isostatically pressed material. Met. Mater. Trans. A 1991, 22, 2733–2745. [Google Scholar] [CrossRef]
- Farayibi, P.; Blüm, M.; Weber, S. Densification of a high chromium cold work tool steel powder in different atmospheres by SLPS: Microstructure, heat treatment and micromechanical properties. Mater. Sci. Eng. A 2020, 777, 139053. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chen, J.R.; Zhang, L.Y. Microstructure of high carbon and vanadium die steel CPM10V after vacuum sintering. Powder Metall. Technol. 1997, 15, 255–257. [Google Scholar]
- Wang, C.L.; Zheng, Q.; Jiang, W.B.; Li, H.X. Investigation on hot pressing of PM high speed steels at low pressure. Powder Metall. Ind. 2005, 15, 1–6. [Google Scholar]
- Pellizzari, M.; Fedrizzi, A.; Zadra, M. Influence of processing parameters and particle size on the properties of hot work and high speed tool steels by spark plasma sintering. Mater. Des. 2011, 32, 1796–1805. [Google Scholar] [CrossRef]
- Oh, S.-J.; Jun, J.-H.; Lee, M.-H.; Shon, I.-J.; Lee, S.-J. Microstructure and mechanical properties of highly alloyed FeCrMoVC steel fabricated by spark plasma sintering. Met. Mater. Int. 2018, 24, 597–603. [Google Scholar] [CrossRef]
- Jin, J.; Gao, R.; Peng, H.; Guo, H.; Gong, S.; Chen, B. Rapid solidification microstructure and carbide precipitation behavior in electron beam melted high-speed steel. Met. Mater. Trans. A 2020, 51, 2411–2429. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Niu, J.; Liu, S.; Lin, Y.; Liu, N.; Ma, J.; Zhang, Z.; Wang, J. Microstructure and mechanical properties of M2 high speed steel produced by electron beam melting. Mater. Sci. Eng. A 2023, 862, 144327. [Google Scholar] [CrossRef]
- Sinico, M.; Metelkova, J.; Dalemans, T.; Thijs, L.; Van Hooreweder, B. High speed laser powder bed fusion of M789 tool steel with an optimized 120 µm layer thickness approach. Procedia CIRP 2022, 111, 162–165. [Google Scholar] [CrossRef]
- Lim, S.-H.; Ryou, K.; Jang, K.; Choi, W.S.; Lee, H.M.; Choi, P.-P. Hot cracking behavior of additively manufactured D2 steel. Mater. Charact. 2021, 178, 111217. [Google Scholar] [CrossRef]
- Zhong, H.L.; Fang, Y.; Kuang, C.; Kuang, X.; Hao, Q.; Li, X. Development of powder metallurgy high speed steel. Mater. Sci. Forum 2010, 638, 1854–1859. [Google Scholar] [CrossRef]
- Peng, H.; Hu, L.; Li, L.; Zhang, L.; Zhang, X. Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment. J. Alloys Compd. 2018, 740, 766–773. [Google Scholar] [CrossRef]
- Qiu, Y.; Lin, Y.J.; Zhang, Q.Y.; Chen, F.; Zhang, Y.X. Study on tool steels with ultrahigh carbon and ultrahigh chromium prepared by vacuum hot-pressing. Powder Metall. Technol. 2021, 39, 297–303. [Google Scholar]
- Zepon, G.; Ellendt, N.; Uhlenwinkel, V.; Bolfarini, C. Solidification sequence of spray-formed steels. Met. Mater. Trans. A 2015, 47, 842–851. [Google Scholar] [CrossRef]
- Crucible Industries Data Sheets. Available online: https://www.crucible.com/Products.aspx?c=DoList (accessed on 17 March 2023).
- Wang, Y.; Chu, S.; Mao, B.; Xing, H.; Zhang, J.; Sun, B. Microstructure, residual stress, and mechanical property evolution of a spray-formed vanadium-modified high-speed steel processed by post-heat treatment. J. Mater. Res. Technol. 2022, 18, 1521–1533. [Google Scholar] [CrossRef]
- Jovičević-Klug, P.; Puš, G.; Jovičević-Klug, M.; Žužek, B.; Podgornik, B. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Mater. Sci. Eng. A 2022, 829, 142157. [Google Scholar] [CrossRef]
- Cíger, R.; Krbaťa, M.; Kianicová, M.; Eckert, M.; Chochlíková, H. Effect of heat treatment on notch toughness of powdered tool steels M390 and M398. Procedia Struct. Integr. 2023, 43, 312–317. [Google Scholar] [CrossRef]
- Blendell, J.E.; Rheinheimer, W. Solid-State Sintering. Encycl. Mater. Tech. Ceram. Glasses 2020, 1, 249–257. [Google Scholar] [CrossRef]
- Saini, N.; Pandey, C.; Mahapatra, M.M.; Mulik, R.S. Evolution of nano-size precipitates during tempering of 9Cr-1Mo-1W-V-Nb steel and their influence on mechanical properties. Mater. Sci. Eng. A 2018, 711, 37–43. [Google Scholar] [CrossRef]
- Porter, D.A.; Easterling, K.E. Phase Transformations in Metals and Alloys, 3rd ed.; Taylor & Francis: Milton Park, UK, 1992. [Google Scholar]
- Hoyle, G. High Speed Steels; Butterworth: Cambridge, UK, 1988. [Google Scholar]
- Xu, G.; Huang, P.; Wei, Z.; Feng, Z.; Zu, G. Microstructural variations and mechanical properties of deep cryogenic treated AISI M35 high-speed steel tempered at various temperatures. J. Mater. Res. Technol. 2022, 17, 3371–3383. [Google Scholar] [CrossRef]
- Stiller, K.; Svensson, L.E.; Howell, P.R.; Rong, W.; Andren, H.O.; Dunlop, G.L. High resolution microanalytical study of precipitation in a powder metallurgical high speed steel. Acta Metall. 1984, 32, 1457–1467. [Google Scholar] [CrossRef]
- Available online: https://www.crucible.com/PDFs//DataSheets2010/dsT15v1%202010.pdf (accessed on 17 March 2023).
C | Si | Mn | Cr | W | Mo | V | Co | O | N | Fe |
---|---|---|---|---|---|---|---|---|---|---|
1.67 | 1.02 | 0.45 | 5.12 | 12.66 | 0.24 | 5.18 | 5.29 | 0.030 | 0.097 | Balance |
Preparation Processes | Volume Fraction of Carbide(%) | ||
---|---|---|---|
M6C | MC | M6C+MC | |
as-VHP | 9.1 | 17.0 | 26.1 |
as-VHP after quenching and tempering | 6.2 | 10.4 | 16.6 |
VHP+DBT-ed@1100°C_2h | 10.8 | 18.9 | 29.7 |
VHP+DBT-ed@1100°C_2h after quenching and tempering | 5.9 | 11.4 | 17.3 |
VHP+DBT-ed@1100°C_4h | 10.7 | 17.6 | 28.3 |
VHP+DBT-ed@1100°C_4h after quenching and tempering | 6.7 | 12.8 | 19.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, W.; Lin, Y. T15 High Speed Steels Produced by High-Temperature Low-Pressure Short-Time Vacuum Hot-Pressing Combined with Subsequent Diffusion-Bonding Treatment. Metals 2023, 13, 998. https://doi.org/10.3390/met13050998
Shan W, Lin Y. T15 High Speed Steels Produced by High-Temperature Low-Pressure Short-Time Vacuum Hot-Pressing Combined with Subsequent Diffusion-Bonding Treatment. Metals. 2023; 13(5):998. https://doi.org/10.3390/met13050998
Chicago/Turabian StyleShan, Wentao, and Yaojun Lin. 2023. "T15 High Speed Steels Produced by High-Temperature Low-Pressure Short-Time Vacuum Hot-Pressing Combined with Subsequent Diffusion-Bonding Treatment" Metals 13, no. 5: 998. https://doi.org/10.3390/met13050998
APA StyleShan, W., & Lin, Y. (2023). T15 High Speed Steels Produced by High-Temperature Low-Pressure Short-Time Vacuum Hot-Pressing Combined with Subsequent Diffusion-Bonding Treatment. Metals, 13(5), 998. https://doi.org/10.3390/met13050998