Nb Phase Position Marking for Clarifying the Formation Process of Cu-Al Composite Interfacial Phases in Continuous Composite Casting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Continuous Composite Casting
2.2. Microstructure Analysis
2.3. Thermodynamic Calculations
3. Results and Analysis
3.1. Microstructure of the Cu-Nb Alloy
3.2. Interface Morphology of the Cu-Nb/Al Composite
3.3. Thermodynamic Calculation of the Interfacial Phase Formation Sequence
3.4. Interfacial Phase Formation Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.G.; Zhang, H.M.; Zhao, D.D.; Liu, Y.Y.; Jiang, Z.Y. Effects of annealing temperature on interface microstructure and element diffusion of ultra-thin Cu/Al composite sheets. Mater. Lett. 2022, 322, 132491. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yuan, X.G.; Huang, H.J.; Zou, X.J.; Cheng, Y.L. Influence of chloride ion concentration and temperature on the corrosion of Cu–Al composite plates in salt fog. J. Alloys Compd. 2020, 821, 153249. [Google Scholar] [CrossRef]
- Lenka, K.; Radim, K.; Karel, D.; Adéla, M. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A 2019, 742, 743–750. [Google Scholar]
- Song, H.; Hao, W.X.; Mu, X.W.; Han, T.Z.; Che, C.J.; Geng, G.H. Effect of pulse current-assisted rolling on the interface bonding strength and microstructure of Cu/Al laminated composite. Metals 2020, 11, 1555. [Google Scholar] [CrossRef]
- Gao, L.; Zou, T.J.; Zhang, P.; Sun, L.X.; Cao, F.; Liang, S.H. Interfacial bonding mechanism and mechanical properties of adding CuZn alloy fibre for Cu/Al composite. Mater. Charact. 2022, 188, 111883. [Google Scholar] [CrossRef]
- Radim, K.; Lenka, K.; Casey, F.D.; Terry, C.L.; Ivo, S.; Adéla, M. Deformation behavior of multilayered Al–Cu clad composite during cold-swaging. Mater. Des. 2016, 90, 379–388. [Google Scholar]
- Sealy, C. Polymer composite combines novel properties. Mater. Today 2017, 20, 558–559. [Google Scholar] [CrossRef]
- Gao, H.T.; Li, J.; Lei, G.; Song, L.L.; Kong, C.; Yu, H.L. High strength and thermal stability of multilayered Cu/Al composites fabricated through accumulative roll bonding and cryorolling. Metall. Mater. Trans. A 2022, 53, 1176–1187. [Google Scholar] [CrossRef]
- Kim, I.K.; Hong, S.I. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates. Mater. Des. 2013, 47, 590–598. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, A.Q.; Tian, H.W.; Xie, J.P. The synergetic tensile deformation behavior of Cu/Al laminated composites prepared by twin-roll casting technology. Mater. Res. Express 2019, 6, 016530. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chang, G.W.; Yue, X.D.; Li, Q.C. Solidification process and microstructure of transition layer of Cu-Al composite cast prepared by method of pouring molten aluminum. Trans. Nonferrous Met. Soc. China 2016, 26, 2247–2256. [Google Scholar] [CrossRef]
- Hoseini-Athar, M.M.; Tolaminejad, B. Interface morphology and mechanical properties of Al-Cu-Al laminated composites fabricated by explosive welding and subsequent rolling process. Met. Mater. Int. 2016, 22, 670–680. [Google Scholar] [CrossRef]
- Su, Y.J.; Liu, X.H.; Wu, Y.F.; Huang, H.Y.; Xie, J.X. Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods. Int. J. Miner. Metall. Mater. 2013, 20, 684–692. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.; Xie, G.L.; Xu, J.X.; Liu, X.H. Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting. Int. J. Miner. Metall. Mater. 2022, 29, 1578–1588. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, F.; Xie, G.L.; Hou, Y.F.; Wang, R.; Liu, X.H. Rolling deformation behaviour and interface evaluation of Cu-Al bimetallic composite plates fabricated by horizontal continuous composite casting. J. Mater. Process. Technol. 2021, 298, 117296. [Google Scholar] [CrossRef]
- Wang, J.; Lei, Y.; Liu, X.H.; Xie, G.L.; Jiang, Y.Q.; Zhang, S. Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal continuous casting composite. China J. Eng. 2020, 42, 216–224. [Google Scholar]
- Ikeda, Y.; Mancias, J.; Gan, B.; Maass, R. Evidence of room-temperature shear-deformation in a Cu-Al intermetallic. Scr. Mater. 2021, 190, 126–130. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, A.Q.; Liang, T.T.; Xie, J.P. Hot deformation behaviour of Cu/Al laminated composites under interface constraint effect. Mater. Res. Express 2018, 5, 066531. [Google Scholar] [CrossRef]
- Guo, Y.J.; Liu, G.W.; Jin, H.Y.; Shi, Z.Q.; Qian, G.J. Intermetallic phase formation in diffusion-bonded Cu/Al laminates. J. Mater. Sci. 2011, 46, 2467–2473. [Google Scholar] [CrossRef]
- Lee, K.S.; Kwon, Y. Solid-state bonding between Al and Cu by vacuum hot pressing. Trans. Nonferrous Met. Soc. China 2013, 23, 341–346. [Google Scholar] [CrossRef]
- Tavassoli, S.; Abbasi, M.; Tahavvori, R. Controlling of IMCs layer formation sequence, bond strength and electrical resistance in Al-Cu bimetal compound casting process. Mater. Des. 2016, 108, 343–353. [Google Scholar] [CrossRef]
- Su, Y.J.; Liu, X.H.; Huang, H.Y.; Liu, X.F.; Xie, J.X. Interfacial microstructure and bonding strength of copper cladding aluminum rods fabricated by horizontal core-filling continuous casting. Met. Mater. Trans. A 2011, 42, 4088–4099. [Google Scholar] [CrossRef]
- Tian, S.K.; Zhao, F.; Liu, X.H. Clarification of the solid-state diffusion behavior of a copper alloy/aluminum alloy composite interface assisted by position marking of the second phases. Mater. Charact. 2022, 192, 112173. [Google Scholar] [CrossRef]
- Liu, X.H.; Fu, H.D.; He, X.Q.; Fu, X.T.; Jiang, Y.Q.; Xie, J.X. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites. Acta Metall. Sin. 2018, 54, 470–484. [Google Scholar]
- Pretorius, R.; de Reus, R.; Vredenberg, A.M.; Saris, F.W. Use of the effective heat of formation rule for predicting phase formation sequence in Al−Ni systems. Mater. Lett. 1990, 9, 494–499. [Google Scholar] [CrossRef]
- Pretorius, R.; Vredenberg, A.M.; Saris, F.W.; de Reus, R. Prediction of phase formation sequence and phase stability in binary metal−aluminum thin−film systems using the effective heat of formation rule. J. Appl. Phys. 1991, 70, 3636–3646. [Google Scholar] [CrossRef]
- Buhler, T.; Fries, S.G.; Spencer, P.J.; Lukas, H.L. A thermodynamic assessment of the Al-Cu-Mg ternary system. J. Phase Equilib. 1998, 19, 317–333. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, P.; Zou, J.T.; Wang, T.M. The formation and growth of intermetallic compounds during interdiffusion of Al/Cu bimetals. Mater. Res. Express 2022, 9, 056503. [Google Scholar] [CrossRef]
Types of Cu-Al Intermetallic Compounds | ∆G (J/mol) |
---|---|
CuAl2 | −77,100 + 22.3T |
Cu9Al4 | −334,000 + 96.1T |
CuAl | −51,380 + 14.8T |
Cu3Al2 | −128,440 + 36.9T |
Phase (IMCs) | Compound Concentration | [28] | Effective Concentration | |
---|---|---|---|---|
Limiting Element | ||||
CuAl2 | Cu0.33Al0.67 | −13.05 | Cu | −6.76 |
CuAl | Cu0.51Al0.49 | −19.92 | Cu | −6.68 |
Cu3Al2 | Cu0.605Al0.9.395 | −20.67 | Cu | −5.84 |
Cu9Al4 | Cu0.66Al0.34 | −21.69 | Cu | −5.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhao, F.; Liu, X. Nb Phase Position Marking for Clarifying the Formation Process of Cu-Al Composite Interfacial Phases in Continuous Composite Casting. Metals 2023, 13, 1045. https://doi.org/10.3390/met13061045
Wang J, Zhao F, Liu X. Nb Phase Position Marking for Clarifying the Formation Process of Cu-Al Composite Interfacial Phases in Continuous Composite Casting. Metals. 2023; 13(6):1045. https://doi.org/10.3390/met13061045
Chicago/Turabian StyleWang, Jun, Fan Zhao, and Xinhua Liu. 2023. "Nb Phase Position Marking for Clarifying the Formation Process of Cu-Al Composite Interfacial Phases in Continuous Composite Casting" Metals 13, no. 6: 1045. https://doi.org/10.3390/met13061045
APA StyleWang, J., Zhao, F., & Liu, X. (2023). Nb Phase Position Marking for Clarifying the Formation Process of Cu-Al Composite Interfacial Phases in Continuous Composite Casting. Metals, 13(6), 1045. https://doi.org/10.3390/met13061045