Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of the Ti3C2 MXene
2.2.2. Synthesis of MnO2/MXene
2.2.3. Characterization
2.2.4. Electrochemical Measurement
2.2.5. Desalination Performance Experiments
3. Results and Discussion
3.1. Materials Characterization
3.2. Desalination Performance
3.3. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shannon, M.; Bohn, P.; Elimelech, M.; Georgiadis, J.; Marinas, B.; Mayes, A. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Elimelech, M.; Phillip, W. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P. Water in Crisis: A Guide to the World’s Fresh Water Resources; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Tang, K.; Hong, T.; You, L.; Zhou, K. Carbon-metal compound composite electrodes for capacitive deionization: Synthesis, development and applications. J. Mater. Chem. A 2019, 7, 26693–26743. [Google Scholar] [CrossRef]
- McGovern, R.; Weiner, A.; Sun, L.; Chambers, C.; Zubair, S.; Lienhard, V.J. On the cost of electrodialysis for the desalination of high salinity feeds. Appl. Energy 2014, 136, 649–661. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef]
- Wang, R.; Sun, K.; Zhang, Y.; Qian, C.; Bao, W. Dimensional optimization enables high-performance capacitive deionization. J. Mater. Chem. A 2022, 1, 6414–6441. [Google Scholar] [CrossRef]
- Xu, X.; Yang, T.; Zhang, Q.; Xia, W.; Ding, Z.; Eid, K.; Abdullah, A.; Hossain, M.; Zhang, S.; Tang, J.; et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J. 2020, 390, 124493. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Z.; Zhang, X.; Li, J.; Liu, X.; Lu, T.; Yao, Y.; Pan, L. Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination. J. Mater. Chem. 2019, 7, 2535–25313. [Google Scholar] [CrossRef]
- Feng, C.; Tsai, C.; Ma, C.; Yu, C.; Hou, C. Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chem. Eng. J. 2017, 330, 1–10. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Wang, S.; Zhan, F.; Fu, Y.; Qiao, H.; Qiu, J. Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environ. Sci. Tech. Let. 2018, 5, 98–102. [Google Scholar] [CrossRef]
- Pasta, M.; Wessells, C.; Cui, Y.; La Mantia, F. A desalination battery. Nano Lett. 2012, 12, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, M.; Tang, M.; Li, Y.; Liu, Y.; Cao, H.; Li, F. Phase- and Crystallinity-Tailorable MnO2 as an Electrode for Highly Efficient Hybrid Capacitive Deionization (HCDI). ACS Sustain. Chem. Eng. 2020, 8, 11424–11434. [Google Scholar] [CrossRef]
- Bo, Z.; Yi, K.; Yang, H.; Guo, X.; Huang, Z.; Zheng, Z.; Yan, J.; Cen, K.; Ostrikov, K. More from Less but Precise: Industry-relevant Pseudocapacitance by Atomically-precise Mass-loading MnO2 within Multifunctional MXene Aerogel. J. Power Sources 2021, 492, 229639. [Google Scholar] [CrossRef]
- Zhang, B.; Boretti, A.; Castelletto, S. Mxene pseudocapacitive electrode material for capacitive deionization. Chem. Eng. J. 2022, 435, 134959. [Google Scholar] [CrossRef]
- Dixit, F.; Zimmermann, K.; Dutta, R.; Prakash, N.; Barbeau, B.; Mohseni, M. Kandasubramanian, Application of MXenes for Water Treatment and Energy-Efficient Desalination: A Review. J. Hazard. Mater. 2022, 423, 127050. [Google Scholar] [CrossRef] [PubMed]
- Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M.; Aslan, M.; Suss, M.; Presser, V. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A 2016, 4, 18265–18271. [Google Scholar] [CrossRef]
- Srimuk, P.; Halim, J.; Lee, J.; Tao, Q.; Rosen, J.; Presser, V. Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation. ACS Sustain. Chem. Eng. 2018, 6, 3739–3747. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Kang, J.; Jo, K.; Kim, S.; Sung, Y.; Yoon, J. Lithium recovery from brine using a lambda-MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015, 125, 50–56. [Google Scholar] [CrossRef]
- Byles, B.; Hayes-Oberst, B.; Pomerantseva, E. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization. ACS Appl. Mater. Inter. 2018, 10, 32313–32322. [Google Scholar] [CrossRef]
- Hand, S.; Cusick, R. Characterizing the Impacts of Deposition Techniques on the Performance of MnO2 Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization. Environ. Sci. Technol. 2017, 51, 12027–12034. [Google Scholar] [CrossRef]
- Guo, L.; Mo, R.; Shi, W.; Huang, Y.; Leong, Z.; Ding, M.; Chen, F.; Yang, H. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism. Nanoscale 2017, 9, 13305–13312. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Xu, X.; Li, Y.; Wang, K.; Lu, T.; Pan, L. Significantly improved stability of hybrid capacitive deionization using nickel hexacyanoferrate/reduced graphene oxide cathode at low voltage operation. Desalination 2019, 468, 114078. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Yoon, J. Rocking Chair Desalination Battery Based on Prussian Blue Electrodes. ACS Omega 2017, 2, 1653–1659. [Google Scholar] [CrossRef]
- Cao, J.; Wang, Y.; Wang, L.; Yu, F.; Ma, J. Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. Nano Lett. 2019, 19, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Y.; Wang, Z.; Lin, T.; Zhu, X.; Luo, B.; Hu, H.; Xing, W.; Yan, Z.; Wang, L. Lithiation-Induced Vacancy Engineering of Co3O4 with Improved Faradic Reactivity for High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172. [Google Scholar] [CrossRef]
- Trinh, N.; Chung, S.; Lee, J.; Lee, J. Development of high quality Fe3O4/rGO composited electrode for low energy water treatment. J. Energy Chem. 2016, 25, 354–360. [Google Scholar] [CrossRef]
- Liang, S.; Han, C.; Meng, Q.; Tian, G. Nitrogen and sulfur co-doped NaTi2(PO4)3/hole graphene composite as high-performance electrosorption electrodes for hybrid capacitive deionization. J. Mater. Sci. 2020, 55, 6017–6029. [Google Scholar] [CrossRef]
- Yuan, Y.; Yao, W.; Byles, B.; Pomerantseva, E.; Amine, K.; Shahbazian-Yassar, R.; Lu, J. Revealing the Atomic Structures of Exposed Lateral Surfaces for Polymorphic Manganese Dioxide Nanowire. Small Struct. 2021, 2, 91. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Zhang, B.; Jiao, Y.; Huang, J.; Wang, F. Manganese dioxide nanosheets decorated on MXene (Ti3C2Tx) with enhanced performance for asymmetric supercapacitors. Ceram. Int. 2021, 47, 12211–12220. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, Y.; Xu, W.; Peng, C. A novel MnO2/MXene composite prepared by electrostatic self-assembly and its use as an electrode for enhanced supercapacitive performance. Inorg. Chem. Front. 2019, 6, 199–208. [Google Scholar] [CrossRef]
- Rakhi, R.; Ahmed, B.; Anjum, D.; Alshareef, H. Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications. ACS Appl. Mater. Interfaces 2016, 8, 18806–18814. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Li, F.; Zhang, Z.; Lai, Q.; Liu, Y.; Gu, J.; Wang, L. Three-dimensional interconnected ultrathin manganese dioxide nanosheets grown on carbon cloth combined with Ti3C2Tx MXene for high-capacity zinc-ion batteries. J. Colloid Interf. Sci. 2022, 615, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Lv, J.; Yu, X.; Zhao, H.; Sun, C.; Zhou, Z.; Ying, Y.; Tan, L. Further construction of MnO2 composite through in-situ growth on MXene surface modified by carbon coating with outstanding catalytic properties on thermal decomposition of ammonium perchlorate. Appl. Surf. Sci. 2020, 502, 144171. [Google Scholar] [CrossRef]
- Khan, A.; Awan, S.; Husnain, S.; Abbas, N.; Anjum, D.; Abbas, N.; Benaissa, M.; Mirza, C.; Mujtaba-ul-Hassan, S. Shahzad, 3D flower like 8-MnO2/MXene Nano-hybrids for the removal of hexavalent Cr from wastewater. Ceram. Int. 2021, 47, 25951–25958. [Google Scholar] [CrossRef]
- Qu, H.; Deng, J.; Peng, D.; Wei, T.; Zhang, H.; Peng, R. Selective Adsorption of Pb2+ in the Presence of Mg2+ by Layer-by-Layer Self-Assembled MnO2/Mxene Composite Films. Processes 2022, 10, 641. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Luo, X.; Miao, Y.; Zhang, Y.; Xu, W.; Yang, L.; Liang, Y.; Weng, W.; Zhu, M. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram. Int. 2020, 46, 11874–11881. [Google Scholar] [CrossRef]
- Wang, G.; Xu, H.; Lu, L.; Zhao, H. One-step synthesis of mesoporous MnO2/carbon sphere composites for asymmetric electrochemical capacitors. J. Mater. Chem. A 2015, 3, 1127–1132. [Google Scholar] [CrossRef]
- Leong, Z.; Yang, H. A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces 2019, 11, 13176–13184. [Google Scholar] [CrossRef]
- Wang, K.; Chen, L.; Zhu, G.; Xu, X.; Wan, L.; Lu, T.; Pan, L. Ferroferric oxide@titanium carbide MXene heterostructure with enhanced sodium storage ability for efficient hybrid capacitive deionization. Desalination 2022, 522, 115420. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Wang, G.; Wang, Y.; Ling, Z.; Li, C. Freestanding Ti3C2 Tx MXene/Prussian Blue Analogues Films with Superior Ion Uptake for Efficient Capacitive Deionization by a Dual Pseudocapacitance Effect. ACS Nano 2022, 16, 1239–1249. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, B.; Li, F.; Kuang, M.; Huang, M.; Yang, Y.; Zhang, Y. Sculpturing the Core towards Mesoporous Manganese Dioxides Nanosheets-Built Nanotubes for Pseudocapacitance. Electrochim. Acta 2016, 187, 488–495. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.; Liang, P.; Chen, Z.; Bai, L.; Shen, H.; Liu, X.; Xia, X.; Zhao, Y.; Savilov, S.; Lin, J.; et al. Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. ACS Nano 2016, 10, 10211–10219. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, C.; Lee, J. High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 2016, 19, 210–221. [Google Scholar] [CrossRef]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Brezesinski, T.; Wang, J.; Polleux, J.; Dunn, B.; Tolbert, S. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802–1809. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, T.; Khan, A.; Liu, G. Block copolymer-based porous carbon fibers. Sci. Adv. 2019, 5, u6852. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, T.; Chen, Y.; Hou, C. Incorporating Manganese Dioxide in Carbon Nanotube–Chitosan as a Pseudocapacitive Composite Electrode for High-Performance Desalination. ACS Sustain. Chem. Eng. 2018, 6, 3196–3205. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, Q.; Xu, X.; Zhang, J.; Li, W.; Wang, P. Insights on ions migration in the nanometer channel of calcium silicate hydrate under external electric field. Electrochim. Acta 2019, 320, 134637. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Peng, J.; Yang, S.; Jin, R.; Liu, C.; Huang, Q. Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity. Metals 2023, 13, 1047. https://doi.org/10.3390/met13061047
Sun Z, Peng J, Yang S, Jin R, Liu C, Huang Q. Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity. Metals. 2023; 13(6):1047. https://doi.org/10.3390/met13061047
Chicago/Turabian StyleSun, Zhumei, Jun Peng, Shu Yang, Riya Jin, Changcheng Liu, and Que Huang. 2023. "Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity" Metals 13, no. 6: 1047. https://doi.org/10.3390/met13061047
APA StyleSun, Z., Peng, J., Yang, S., Jin, R., Liu, C., & Huang, Q. (2023). Synthesis of Low-Crystalline MnO2/MXene Composites for Capacitive Deionization with Efficient Desalination Capacity. Metals, 13(6), 1047. https://doi.org/10.3390/met13061047