A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Fundamentals of Producing H2 by Photocatalytic Water Splitting over TiO2
2.1. Mechanism of Photocatalytic Water Splitting to Generate H2
2.2. Impact of Oxygen Defects on the Photocatalytic Activity of TiO2
2.3. Brief Overview on Photocatalytic Water Splitting to Generate H2 over TiO2−δ
3. Methods of Introducing Oxygen Defects in TiO2
3.1. Reductive Treatment
3.2. Pulsed Laser Irradiation
3.3. Pulsed Laser Deposition
3.4. Ion Doping
3.5. Plasma-Assisted Deposition
3.6. Ultrasonic-Assisted Techniques
3.7. Calcination under Anoxic Conditions
3.8. Molten Salt Calcination
4. Modification Methods of TiO2−δ Photocatalysts
4.1. Ion Doping
4.1.1. Metal Ion Doping
4.1.2. Nonmetallic Ion Doping
4.1.3. Multiple Ion Co-Doping
4.2. Composite
4.3. Surface Noble Metal Deposition
4.4. Dye Sensitization
4.5. Loading on Supports
4.6. Crystal Facet Engineering
5. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sial, M.H.; Arshed, N.; Amjad, M.A.; Khan, Y.A. Nexus between fossil fuel consumption and infant mortality rate: A non-linear analysis. Environ. Sci. Pollut. Res. 2022, 29, 58378–58387. [Google Scholar] [CrossRef] [PubMed]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Aslan, M.; Isik, H. Green energy for the battlefield. Int. J. Green Energy 2017, 14, 1020–1026. [Google Scholar] [CrossRef]
- Koroneos, C.; Spachos, T.; Moussiopoulos, N. Exergy analysis of renewable energy sources. Renew. Energy 2003, 28, 295–310. [Google Scholar] [CrossRef]
- Kumar, G.; Kim, S.-H.; Lay, C.-H.; Ponnusamy, V.K. Recent developments on alternative fuels, energy and environment for sustainability Preface. Bioresour. Technol. 2020, 317, 124010. [Google Scholar] [CrossRef] [PubMed]
- Veziroglu, T.N.; Sahin, S. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, S.; Jain, A. Significance of Hydrogen as Economic and Environmentally Friendly Fuel. Energies 2021, 14, 7389. [Google Scholar] [CrossRef]
- Muradov, N. Low to near-zero CO2 production of hydrogen from fossil fuels: Status and perspectives. Int. J. Hydrogen Energy 2017, 42, 14058–14088. [Google Scholar] [CrossRef]
- Qureshi, F.; Yusuf, M.; Ibrahim, H.; Kamyab, H.; Chelliapan, S.; Pham, C.Q.; Vo, D.V.N. Contemporary avenues of the Hydrogen industry: Opportunities and challenges in the eco-friendly approach. Environ. Res. 2023, 229, 115963. [Google Scholar] [CrossRef]
- Sapountzi, F.M.; Gracia, J.M.; Weststrate, C.J.; Fredriksson, H.O.A.; Niemantsverdriet, J.W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Prog. Energy Combust. Sci. 2017, 58, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Tee, S.Y.; Win, K.Y.; Teo, W.S.; Koh, L.-D.; Liu, S.; Teng, C.P.; Han, M.-Y. Recent Progress in Energy-Driven Water Splitting. Adv. Sci. 2017, 4, 1600337. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.A.; Bahnemann, D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101. [Google Scholar] [CrossRef]
- Dean, J.A.; Wei, J. Lange’s Handbook of Chemistry, 2nd ed.; Science Press: Beijing, China, 2003. [Google Scholar]
- Djurisic, A.B.; He, Y.; Ng, A.M.C. Visible-light photocatalysts: Prospects and challenges. Apl Mater. 2020, 8, 033001. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Wei, X.; Qiu, Y.; Song, Y.; Bi, L.; Tang, P.; Yan, X.; Wang, S.; Liao, J. TiO2 aerogel composite high-efficiency photocatalysts for environmental treatment and hydrogen energy production. Nanotechnol. Rev. 2023, 12, 20220490. [Google Scholar] [CrossRef]
- Nur, A.S.M.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F.N.; Islam, A.; Sumi, M.S.A. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation. J. Water Process Eng. 2022, 47, 102728. [Google Scholar] [CrossRef]
- Zhang, T.; Han, X.; Nguyen, N.T.; Yang, L.; Zhou, X. TiO2-based photocatalysts for CO2 reduction and solar fuel generation. Chin. J. Catal. 2022, 43, 2500–2529. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; et al. Synthesis, modification and application of titanium dioxide nanoparticles: A review. Nanoscale 2022, 14, 6709–6734. [Google Scholar] [CrossRef]
- Feng, J.; Pan, L.; Liu, H.; Yuan, S.; Zhang, L.; Yin, H.; Song, H.; Li, L. Synergistic degradation of the aqueous antibiotic norfloxacin by nonthermal plasma combined with defective titanium dioxide exposed {001} facets. Sep. Purif. Technol. 2022, 300, 121761. [Google Scholar] [CrossRef]
- Zhu, C.; Shen, Y.; Yang, F.; Zhu, P.; An, C. Engineering hydrogenated TiO2 nanosheets by rational deposition of Ni clusters and Pt single atoms onto exposing facets for high-performance solar fuel production. Chem. Eng. J. 2023, 466, 143174. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, L.-C.; Gong, Y.; Niu, P.; Wang, J.-Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H.-M. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv. Mater. 2018, 30, 1704479. [Google Scholar] [CrossRef]
- Cushing, S.K.; Meng, F.; Zhang, J.; Ding, B.; Chen, C.K.; Chen, C.-J.; Liu, R.-S.; Bristow, A.D.; Bright, J.; Zheng, P.; et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal. 2017, 7, 1742–1748. [Google Scholar] [CrossRef] [Green Version]
- Hong, R.; Deng, C.; Jing, M.; Lin, H.; Tao, C.; Zhang, D. Oxygen flows-dependent photocatalytic performance in Ti3+ doped TiO2 thin films. Opt. Mater. 2019, 95, 109224. [Google Scholar]
- Liu, L.; Liu, J.; Zong, S.; Huang, Z.; Feng, X.; Zheng, J.; Fang, Y. Facile synthesis of nitrogen-doped TiO2 microspheres containing oxygen vacancies with excellent photocatalytic H2 evolution activity. J. Phys. Chem. Solids 2022, 170, 110930. [Google Scholar] [CrossRef]
- Zhao, Z.; Tan, H.; Zhao, H.; Lv, Y.; Zhou, L.-J.; Song, Y.; Sun, Z. Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 2755–2757. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Yu, X.J.; Sun, D.Z. Synthesis, characterization, and photocatalytic activity of TiO2-xNx nanocatalyst. J. Hazard. Mater. 2007, 144, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Liu, Y.; Bo, T.; Zhou, W. Activated HER performance of defected single layered TiO2 nanosheet via transition metal doping. Int. J. Hydrogen Energy 2020, 45, 2681–2688. [Google Scholar] [CrossRef]
- Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO2@BiOCl for selectively efficient conversion of CO2 to CH4. Appl. Catal. B-Environ. 2021, 286, 119832. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Han, W.; Yang, Y.; Zhang, H.-Y.; Wang, Y.; Wang, L.; Sun, X.-J.; Zhang, F.-M. S-scheme heterojunction of black TiO2 and covalent-organic framework for enhanced evolution. Chem. Eng. J. 2022, 446, 137213. [Google Scholar] [CrossRef]
- Rajeshwar, K. Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 2007, 37, 765–787. [Google Scholar] [CrossRef]
- Lettieri, S.; Pavone, M.; Fioravanti, A.; Santamaria Amato, L.; Maddalena, P. Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: A review. Materials 2021, 14, 1645. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Ito, R.; Kogoshi, S.; Katayama, N. Optimal levels of oxygen deficiency in the visible light photocatalyst TiO2-x and long-term stability of catalytic performance. J. Phys. Chem. Solids 2016, 98, 136–142. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Jin, S.; Cao, X.; Ren, F.; Wu, L.; Xing, Z.; Wang, X.; Cai, G.; Jiang, C. Enhanced photoelectrochemical performance of TiO2 through controlled Ar+ ion irradiation: A combined experimental and theoretical study. Int. J. Hydrogen Energy 2018, 43, 6936–6944. [Google Scholar] [CrossRef]
- Tian, M.; Mahjouri-Samani, M.; Eres, G.; Sachan, R.; Yoon, M.; Chisholm, M.F.; Wang, K.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.B.; et al. Structure and formation mechanism of black TiO2 nanoparticles. ACS Nano 2015, 9, 10482–10488. [Google Scholar] [CrossRef]
- Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T. Effect of Ti3+ ions and conduction band electrons on photocatalytic and photoelectrochemical activity of rutile titania for water oxidation. J. Phys. Chem. C 2016, 120, 6467–6474. [Google Scholar] [CrossRef]
- Singh, A.P.; Kodan, N.; Mehta, B.R. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment. Appl. Surf. Sci. 2016, 372, 63–69. [Google Scholar] [CrossRef]
- Xiu, Z.; Guo, M.; Zhao, T.; Pan, K.; Xing, Z.; Li, Z.; Zhou, W. Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chem. Eng. J. 2020, 382, 123011. [Google Scholar] [CrossRef]
- Li, Y.; Cooper, J.K.; Liu, W.; Sutter-Fella, C.M.; Amani, M.; Beeman, J.W.; Javey, A.; Ager, J.W.; Liu, Y.; Toma, F.M.; et al. Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. Nat. Commun. 2016, 7, 12446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Chen, Q.; Dai, W.; Ren, Y.; Zhou, Y.; Yang, J.; Xie, S.; Shen, Y.; Wu, J.; Chen, W.; et al. Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage. Adv. Energy Mater. 2020, 10, 1903107. [Google Scholar] [CrossRef]
- Wendt, S.; Sprunger, P.T.; Lira, E.; Madsen, G.K.H.; Li, Z.; Hansen, J.O.; Matthiesen, J.; Blekinge-Rasmussen, A.; Laegsgaard, E.; Hammer, B. The role of interstitial sites in the Ti 3d defect state in the band gap of Titania. Science 2008, 320, 1755–1759. [Google Scholar] [CrossRef] [Green Version]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 2020, 395, 122599. [Google Scholar] [CrossRef]
- Matthews, R.W. Photooxidation of organic impurities in water using thin-films of titanium-dioxide. J. Phys. Chem. 1987, 91, 3328–3333. [Google Scholar] [CrossRef]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Pan, L.; Ai, M.; Huang, C.; Yin, L.; Liu, X.; Zhang, R.; Wang, S.; Jiang, Z.; Zhang, X.; Zou, J.-J.; et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, A.M.; Yang, R.A.; Munoz, D.T.; Celik, F.E. Metal-free hydrogen evolution over defect-rich anatase titanium dioxide. Int. J. Hydrogen Energy 2018, 43, 15176–15190. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H. Defect engineering of Pt/TiO2-x photocatalysts via reduction treatment assisted by hydrogen spillover. ACS Appl. Mater. Interfaces 2021, 13, 48669–48678. [Google Scholar] [CrossRef]
- Zhang, Y.-C.; Afzal, N.; Pan, L.; Zhang, X.; Zou, J.-J. Structure-activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv. Sci. 2019, 6, 1900053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasikala, R.; Sudarsan, V.; Sudakar, C.; Naik, R.; Sakuntala, T.; Bharadwaj, S.R. Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. Int. J. Hydrogen Energy 2008, 33, 4966–4973. [Google Scholar] [CrossRef]
- Liu, G.; Yang, H.G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G.Q.; Cheng, H.-M. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {001} facets. J. Phys. Chem. C 2009, 113, 21784–21788. [Google Scholar] [CrossRef]
- Amano, F.; Nakata, M. High-temperature calcination and hydrogen reduction of rutile TiO2: A method to improve the photocatalytic activity for water oxidation. Appl. Catal. B-Environ. 2014, 158, 202–208. [Google Scholar] [CrossRef]
- Mali, M.G.; Yoon, H.; An, S.; Choi, J.-Y.; Kim, H.-Y.; Lee, B.C.; Kim, B.N.; Park, J.H.; Al-Deyab, S.S.; Yoon, S.S. Enhanced solar water splitting of electron beam irradiated titania photoanode by electrostatic spray deposition. Appl. Surf. Sci. 2014, 319, 205–210. [Google Scholar] [CrossRef]
- Pitchaimuthu, S.; Honda, K.; Suzuki, S.; Naito, A.; Suzuki, N.; Katsumata, K.-I.; Nakata, K.; Ishida, N.; Kitamura, N.; Idemoto, Y.; et al. Solution plasma process-derived defect-induced heterophase anatase/brookite TiO2 nanocrystals for enhanced gaseous photocatalytic performance. ACS Omega 2018, 3, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Ennaceri, H.; Boujnah, M.; Taleb, A.; Khaldoun, A.; Saez-Araoz, R.; Ennaoui, A.; El Kenz, A.; Benyoussef, A. Thickness effect on the optical properties of TiO2-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study. Int. J. Hydrogen Energy 2017, 42, 19467–19480. [Google Scholar] [CrossRef]
- Nakajima, T.; Nakamura, T.; Shinoda, K.; Tsuchiya, T. Rapid formation of black titania photoanodes: Pulsed laser-induced oxygen release and enhanced solar water splitting efficiency. J. Mater. Chem. A 2014, 2, 6762–6771. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, X.; Lin, B.; Gao, B. Origin of the visible-light photoactivity of NH3-treated TiO2: Effect of nitrogen doping and oxygen vacancies. Appl. Surf. Sci. 2013, 264, 845–852. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Wu, S.-M.; Tian, G.; Zhao, X.-F.; Wang, L.-Y.; Yin, Y.-X.; Wu, L.; Li, Q.-N.; Zhang, Y.-X.; Wu, J.-S.; et al. Titanium vacancies in TiO2 nanofibers enable highly efficient photodriven seawater splitting. Chem.-A Eur. J. 2021, 27, 14202–14208. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Hu, C.; Liu, H.; Qu, J. Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 24989–24994. [Google Scholar] [CrossRef]
- Yuan, D.; Jiao, Y.; Li, Z.; Chen, X.; Ding, J.; Dai, W.-L.; Wan, H.; Guan, G. TiN bridged all-solid Z-Scheme CNNS/TiN/TiO2-x heterojunction by a facile in situ reduction strategy for enhanced photocatalytic hydrogen evolution. Adv. Mater. Interfaces 2021, 8, 2100695. [Google Scholar] [CrossRef]
- Park, E.; Patil, S.S.; Lee, H.; Kumbhar, V.S.; Lee, K. Photoelectrochemical H2 evolution on WO3/BiVO4 enabled by single-crystalline TiO2 overlayer modulations. Nanoscale 2021, 13, 16932–16941. [Google Scholar] [CrossRef]
- Balayeva, N.O.; Mamiyev, Z.; Dillert, R.; Zheng, N.; Bahnemann, D.W. Rh/TiO2-photocatalyzed acceptorless dehydrogenation of N-heterocycles upon visible-light illumination. ACS Catal. 2020, 10, 5542–5553. [Google Scholar] [CrossRef]
- Mo, L.-B.; Bai, Y.; Xiang, Q.-Y.; Li, Q.; Wang, J.-O.; Ibrahim, K.; Cao, J.-L. Band gap engineering of TiO2 through hydrogenation. Appl. Phys. Lett. 2014, 105, 202114. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Ling, Y.; Lepert, M.; Wang, C.; Zhang, J.Z.; Li, Y. Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 2012, 4, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhou, X.; Nhat Truong, N.; Peters, K.; Zoller, F.; Hwang, I.; Schneider, C.; Miehlich, M.E.; Freitag, D.; Meyer, K.; et al. Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H2 evolution from hydrogenated anatase. ChemSusChem 2017, 10, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaksoud, M.K.; Sayed, A.; Sayed, S.; Abbas, M. A novel solar radiation absorption enhancement of TiO2 nanomaterial by a simple hydrogenation method. J. Mater. Res. 2021, 36, 2118–2131. [Google Scholar] [CrossRef]
- Xu, Y.F.; Zhang, C.; Zhang, L.X.; Zhang, X.H.; Yao, H.L.; Shi, J.L. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance. Energy Environ. Sci. 2016, 9, 2410–2417. [Google Scholar] [CrossRef]
- Zhang, J.W.; Wang, S.; Liu, F.S.; Fu, X.J.; Ma, G.Q.; Hou, M.S.; Tang, Z. Preparation of defective TiO2-x hollow microspheres for photocatalytic degradation of methylene blue. Acta Phys.-Chim. Sin. 2019, 35, 885–895. [Google Scholar] [CrossRef]
- Wierzbicka, E.; Altomare, M.; Wu, M.; Liu, N.; Yokosawa, T.; Fehn, D.; Qin, S.; Meyer, K.; Unruh, T.; Spiecker, E.; et al. Reduced grey brookite for noble metal free photocatalytic H2 evolution. J. Mater. Chem. A 2021, 9, 1168–1179. [Google Scholar] [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Kandjani, A.E. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Appl. Surf. Sci. 2015, 359, 883–896. [Google Scholar] [CrossRef]
- Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B-Environ. 2003, 42, 403–409. [Google Scholar] [CrossRef]
- Qiu, J.-Y.; Feng, H.-Z.; Chen, Z.-H.; Ruan, S.-H.; Chen, Y.-P.; Xu, T.-T.; Su, J.-Y.; Ha, E.-N.; Wang, L.-Y. Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met. 2022, 41, 2074–2083. [Google Scholar] [CrossRef]
- Guan, S.; Hao, L.; Lu, Y.; Yoshida, H.; Pan, F.; Asanuma, H. Fabrication of oxygen-deficient TiO2 coatings with nano-fiber morphology for visible-light photocatalysis. Mater. Sci. Semicond. Process. 2016, 41, 358–363. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, J.; Rao, G.; Deng, W.; Li, Y. Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition. Appl. Surf. Sci. 2017, 404, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Oviedo, A.; Ray, S.K.; Hoang Phuc, N.; Lee, S.W. Efficient photo-oxidation of NOx by Sn doped blue TiO2 nanoparticles. J. Photochem. Photobiol. A-Chem. 2019, 370, 18–25. [Google Scholar] [CrossRef]
- Pereira, A.L.J.; Lisboa Filho, P.N.; Acuna, J.; Brandt, I.S.; Pasa, A.A.; Zanatta, A.R.; Vilcarromero, J.; Beltran, A.; Dias da Silva, J.H. Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J. Appl. Phys. 2012, 111, 113513. [Google Scholar] [CrossRef] [Green Version]
- Dhumal, S.Y.; Daulton, T.L.; Jiang, J.; Khomami, B.; Biswas, P. Synthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactor. Appl. Catal. B-Environ. 2009, 86, 145–151. [Google Scholar]
- Xiao, P.; Liu, D.; Garcia, B.B.; Sepehri, S.; Zhang, Y.; Cao, G. Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sens. Actuators B-Chem. 2008, 134, 367–372. [Google Scholar] [CrossRef]
- Kushwaha, S.; Nagarajan, R. Black TiO2-graphitic carbon nanocomposite from a single source precursor and its interaction with colored and colorless contaminants under visible radiation. Mater. Res. Bull. 2020, 132, 110983. [Google Scholar] [CrossRef]
- Starbova, K.; Yordanova, V.; Nihtianova, D.; Hintz, W.; Tomas, J.; Starbov, N. Excimer laser processing as a tool for photocatalytic design of sol-gel TiO2 thin films. Appl. Surf. Sci. 2008, 254, 4044–4051. [Google Scholar] [CrossRef]
- Lau, M.; Reichenberger, S.; Haxhiaj, I.; Barcikowski, S.; Mueller, A.M. Mechanism of laser-induced bulk and surface defect generation in ZnO and TiO2 nanoparticles: Effect on photoelectrochemical performance. ACS Appl. Energy Mater. 2018, 1, 5366–5385. [Google Scholar] [CrossRef] [Green Version]
- Nair, P.R.; Ramirez, C.R.S.; Pinilla, M.A.G.; Krishnan, B.; Avellaneda, D.A.; Pelaes, R.F.C.; Shaji, S. Black titanium dioxide nanocolloids by laser irradiation in liquids for visible light photo-catalytic/electrochemical applications. Appl. Surf. Sci. 2023, 623, 157096. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X.; et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 2013, 23, 5444–5450. [Google Scholar] [CrossRef]
- Filice, S.; Fiorenza, R.; Reitano, R.; Scalese, S.; Scire, S.; Fisicaro, G.; Deretzis, I.; La Magna, A.; Bongiorno, C.; Compagnini, G. TiO2 colloids laser-treated in ethanol for photocatalytic H2 production. ACS Appl. Nano Mater. 2020, 3, 9127–9140. [Google Scholar] [CrossRef]
- Fiorenza, R.; Scire, S.; D’Urso, L.; Compagnini, G.; Bellardita, M.; Palmisano, L. Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. Int. J. Hydrogen Energy 2019, 44, 14796–14807. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T.; Kumagai, T. Pulsed laser-induced oxygen deficiency at TiO2 surface: Anomalous structure and electrical transport properties. J. Solid State Chem. 2009, 182, 2560–2565. [Google Scholar] [CrossRef]
- Leichtweiss, T.; Henning, R.A.; Koettgen, J.; Schmidt, R.M.; Hollaender, B.; Martin, M.; Wuttig, M.; Janek, J. Amorphous and highly nonstoichiometric titania (TiOx) thin films close to metal-like conductivity. J. Mater. Chem. A 2014, 2, 6631–6640. [Google Scholar] [CrossRef] [Green Version]
- Kunti, A.K.; Chowdhury, M.; Sharma, S.K.; Gupta, M.; Chaudhary, R.J. Influence of O2 pressure on structural, morphological and optical properties of TiO2-SiO2 composite thin films prepared by pulsed laser deposition. Thin Solid Film. 2017, 629, 79–89. [Google Scholar] [CrossRef]
- Ali, N.; Bashir, S.; Umm-i-Kalsoom; Akram, M.; Mahmood, K. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. Appl. Surf. Sci. 2013, 270, 49–57. [Google Scholar] [CrossRef]
- Davila, Y.; Petitmangin, A.; Hebert, C.; Perriere, J.; Seiler, W. Oxygen deficiency in oxide films grown by PLD. Appl. Surf. Sci. 2011, 257, 5354–5357. [Google Scholar] [CrossRef]
- Socol, G.; Gnatyuk, Y.; Stefan, N.; Smirnova, N.; Djokic, V.; Sutan, C.; Malinovschi, V.; Stanculescu, A.; Korduban, O.; Mihailescu, I.N. Photocatalytic activity of pulsed laser deposited TiO2 thin films in N2, O2 and CH4. Thin Solid Film. 2010, 518, 4648–4653. [Google Scholar] [CrossRef]
- Nath, A.; Laha, S.S.; Khare, A. Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium-water interface. Appl. Surf. Sci. 2011, 257, 3118–3122. [Google Scholar] [CrossRef]
- Rahman, M.A.; Bazargan, S.; Srivastava, S.; Wang, X.; Abd-Ellah, M.; Thomas, J.P.; Heinig, N.F.; Pradhan, D.; Leung, K.T. Defect-rich decorated TiO2 nanowires for super-efficient photoelectrochemical water splitting driven by visible light. Energy Environ. Sci. 2015, 8, 3363–3373. [Google Scholar] [CrossRef]
- Bellardita, M.; Garlisi, C.; Ozer, L.Y.; Venezia, A.M.; Sa, J.; Mamedov, F.; Palmisano, L.; Palmisano, G. Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Appl. Surf. Sci. 2020, 510, 145419. [Google Scholar] [CrossRef]
- Lo, H.-H.; Gopal, N.O.; Ke, S.-C. Origin of photoactivity of oxygen-deficient TiO2 under visible light. Appl. Phys. Lett. 2009, 95, 083126. [Google Scholar] [CrossRef]
- Pu, X.; Hu, Y.; Cui, S.; Cheng, L.; Jiao, Z. Preparation of N-doped and oxygen-deficient TiO2 microspheres via a novel electron beam-assisted method. Solid State Sci. 2017, 70, 66–73. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.Y.; Lin, L.; He, D.N. Gd-La codoped TiO2 nanoparticles as solar photocatalysts. Prog. Nat. Sci.-Mater. Int. 2015, 25, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Kunti, A.K.; Sharma, S.K. Structural and spectral properties of red light emitting Eu3+ activated TiO2 nanophosphor for white LED application. Ceram. Int. 2017, 43, 9838–9845. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Ren, H.; Yu, L.; Wu, Z.; Zhang, Z. High rate capability and long cycle stability of TiO2-delta-La composite nanotubes as anode material for lithium ion batteries. J. Alloys Compd. 2014, 609, 178–184. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Z.; Wang, X.; Yu, T.; Guan, J.; Yu, Z.; Li, Z.; Zou, Z. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 18396–18400. [Google Scholar] [CrossRef]
- Aguinaco, A.; Amaya, B.; Ramirez-del-Solar, M. Facile fabrication of Fe-TiO2 thin film and its photocatalytic activity. Environ. Sci. Pollut. Res. 2022, 29, 23292–23302. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, S.; Saini, C.P.; Santra, B.; Walczak, L.; Semisalova, A.; Gupta, M.; Kanjilal, A. Modulation of the work function of TiO2 nanotubes by nitrogen doping: Implications for the photocatalytic degradation of dyes. ACS Appl. Nano Mater. 2023, 6, 50–60. [Google Scholar] [CrossRef]
- Hatanaka, Y.; Naito, H.; Itou, S.; Kando, M. Photocatalytic characteristics of hydro-oxygenated amorphous titanium oxide films prepared using remote plasma enhanced chemical vapor deposition. Appl. Surf. Sci. 2005, 244, 554–557. [Google Scholar] [CrossRef]
- Sakai, T.; Kuniyoshi, Y.; Aoki, W.; Ezoe, S.; Endo, T.; Hoshi, Y. High-rate deposition of photocatalytic TiO2 films by oxygen plasma assist reactive evaporation method. Thin Solid Film. 2008, 516, 5860–5863. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wang, F.; Di, L.; Yang, S.; Zhu, S.; Yao, Y.; Ma, C.; Dai, B.; Yu, F. Enhanced photocatalytic degradation of organic dyes via defect-rich TiO2 prepared by dielectric barrier discharge plasma. Nanomaterials 2019, 9, 720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hojo, M.; Okimura, K. Effect of annealing with Ar plasma irradiation for transparent conductive Nb-doped TiO2 films on glass substrate. Jpn. J. Appl. Phys. 2009, 48, 08hk06. [Google Scholar] [CrossRef]
- Kawakami, R.; Mimoto, Y.; Yanagiya, S.-I.; Shirai, A.; Niibe, M.; Nakano, Y.; Mukai, T. Photocatalytic activity enhancement of anatase/rutile-mixed phase TiO2 nanoparticles annealed with low-temperature O2 plasma. Phys. Status Solidi A-Appl. Mater. Sci. 2021, 218, 2100536. [Google Scholar] [CrossRef]
- An, H.-R.; Hong, Y.C.; Kim, H.; Huh, J.Y.; Park, E.C.; Park, S.Y.; Jeong, Y.; Park, J.-I.; Kim, J.-P.; Lee, Y.-C.; et al. Studies on mass production and highly solar light photocatalytic properties of gray hydrogenated-TiO2 sphere photocatalysts. J. Hazard. Mater. 2018, 358, 222–233. [Google Scholar] [CrossRef]
- Mizukoshi, Y.; Ohwada, M.; Seino, S.; Horibed, H.; Nishimura, Y.; Terashima, C. Synthesis of oxygen-deficient blue titanium oxide by discharge plasma generated in aqueous ammonia solution. Appl. Surf. Sci. 2019, 489, 255–261. [Google Scholar] [CrossRef]
- Ji, M.; Choa, Y.-H.; Lee, Y.-I. One-step synthesis of black TiO2-x microspheres by ultrasonic spray pyrolysis process and their visible-light-driven photocatalytic activities. Ultrason. Sonochem. 2021, 74, 105557. [Google Scholar] [CrossRef]
- Nakaruk, A.; Reece, P.J.; Ragazzon, D.; Sorrell, C.C. TiO2 films prepared by ultrasonic spray pyrolysis. Mater. Sci. Technol. 2010, 26, 469–472. [Google Scholar] [CrossRef]
- da Silva, A.L.; Trindade, F.J.; Dalmasso, J.-L.; Ramos, B.; Teixeira, A.C.S.C.; Gouvea, D. Synthesis of TiO2 microspheres by ultrasonic spray pyrolysis and photocatalytic activity evaluation. Ceram. Int. 2022, 48, 9739–9745. [Google Scholar] [CrossRef]
- Nguyen Thi Khanh, V.; Nguyen Nang, D.; Nguyen Van, C.; Nguyen Nhat, H.; Nguyen Thanh, T.; Tran Quoc, T.; Dang Van, T. A simple and efficient ultrasonic-assisted electrochemical approach for scalable production of nitrogen-doped TiO2 nanocrystals. Nanotechnology 2021, 32, 465602. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Vargas, P.A.; Pulgarin, C.; Sienkiewicz, A.; Pizzio, L.R.; Blanco, M.N.; Torres-Palma, R.A.; Petrier, C.; Rengifo-Herrera, J.A. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles. Ultrason. Sonochem. 2012, 19, 383–386. [Google Scholar] [CrossRef]
- Bellardita, M.; El Nazer, H.A.; Loddo, V.; Parrino, F.; Venezia, A.M.; Palmisano, L. Photoactivity under visible light of metal loaded TiO2 catalysts prepared by low frequency ultrasound treatment. Catal. Today 2017, 284, 92–99. [Google Scholar] [CrossRef]
- Langhammer, D.; Thyr, J.; Osterlund, L. Surface properties of reduced and stoichiometric TiO2 as probed by SO2 adsorption. J. Phys. Chem. C 2019, 123, 24549–24557. [Google Scholar] [CrossRef]
- Xu, M.; Chen, Y.; Qin, J.; Feng, Y.; Li, W.; Chen, W.; Zhu, J.; Li, H.; Bian, Z. Unveiling the role of defects on oxygen activation and photodegradation of organic pollutants. Environ. Sci. Technol. 2018, 52, 13879–13886. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, M.; Cui, N.; Chen, G.; Zou, G.; Zhou, L. Defective black TiO2: Effects of annealing atmospheres and urea addition on the properties and photocatalytic activities. Nanomaterials 2021, 11, 2648. [Google Scholar] [CrossRef]
- Du, M.; Chen, Q.; Wang, Y.; Hu, J.; Meng, X. Synchronous construction of oxygen vacancies and phase junction in TiO2 hierarchical structure for enhancement of visible light photocatalytic activity. J. Alloys Compd. 2020, 830, 154649. [Google Scholar] [CrossRef]
- Albetran, H.; O’Connor, B.H.; Low, I.M. Effect of calcination on band gaps for electrospun titania nanofibers heated in air-argon mixtures. Mater. Des. 2016, 92, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Sang, L.X.; Zhang, Z.Y.; Ma, C.F. Photoelectrical and charge transfer properties of hydrogen-evolving TiO2 nanotube arrays electrodes annealed in different gases. Int. J. Hydrogen Energy 2011, 36, 4732–4738. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, F.; An, X.; Liu, H.; Qu, J. Oxygen vacancy modulation of {010}-dominated TiO2 for enhanced photodegradation of Sulfamethoxazole. Catal. Commun. 2019, 118, 35–38. [Google Scholar] [CrossRef]
- Li, Y.; Ye, X.; Cao, S.; Yang, C.; Wang, Y.; Ye, J. Oxygen-deficient dumbbell-shaped anatase TiO2-x mesocrystals with nearly 100% exposed {101} facets: Synthesis, growth mechanism, and Photocatalytic Performance. Chem.-A Eur. J. 2019, 25, 3032–3041. [Google Scholar] [CrossRef]
- Sheng, Z.; Song, S.; Wang, H.; Wu, Z.; Liu, Y. One-step hydrothermal synthesis of Pd-modified TiO2 with high photocatalytic activity for nitric oxide oxidation in gas phase. Environ. Eng. Sci. 2012, 29, 972–978. [Google Scholar] [CrossRef]
- Sasirekha, N.; Basha, S.J.S.; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B-Environ. 2006, 62, 169–180. [Google Scholar] [CrossRef]
- Gao, P.; Yang, L.; Xiao, S.; Wang, L.; Guo, W.; Lu, J. Effect of Ru, Rh, Mo, and Pd adsorption on the electronic and optical properties of anatase TiO2(101): A DFT investigation. Materials 2019, 12, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thalgaspitiya, W.R.K.; Kapuge, T.K.; He, J.; Deljoo, B.; Meguerdichian, A.G.; Aindow, M.; Suib, S.L. Multifunctional transition metal doped titanium dioxide reduced graphene oxide composites as highly efficient adsorbents and photocatalysts. Microporous Mesoporous Mater. 2020, 307, 110521. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.-R.; Wu, L.-G.; Yin, Y.-B.; Jiang, B.-Q.; Lou, J.-Q. Enhanced performance of TiO2/reduced graphene oxide doped by rare-earth ions for degrading phenol in seawater excited by weak visible light. Adv. Powder Technol. 2019, 30, 1920–1931. [Google Scholar] [CrossRef]
- Stengl, V.; Bakardjieva, S.; Murafa, N. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys. 2009, 114, 217–226. [Google Scholar] [CrossRef]
- Fang, X.; Chen, X.; Zhu, Z. Optical and photocatalytic properties of Er3+ and/or Yb3+ doped TiO2 photocatalysts. J. Mater. Sci.-Mater. Electron. 2017, 28, 474–479. [Google Scholar] [CrossRef]
- Setiawati, E.; Kawano, K. Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2. J. Alloys Compd. 2008, 451, 293–296. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, G.; Zhou, Y.; Han, Z. Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: A review. J. Rare Earths 2015, 33, 453–462. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Zuo, C.-G.; Xia, J. Solid-state synthesis and photodegradation property of anatase TiO2 micro-nanopowder by sodium replacement. Solid State Sci. 2021, 115, 106589. [Google Scholar] [CrossRef]
- Lv, C.; Lan, X.; Wang, L.; Yu, Q.; Zhang, M.; Sun, H.; Shi, J. Alkaline-earth-metal-doped TiO2 for enhanced photodegradation and H2 evolution: Insights into the mechanisms. Catal. Sci. Technol. 2019, 9, 6124–6135. [Google Scholar] [CrossRef]
- Li, Y.; Ma, G.; Peng, S.; Lu, G.; Li, S. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl. Surf. Sci. 2008, 254, 6831–6836. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Zaki, A.H.; Ahmed, E.; Farghali, A.A.; Al-Mubaddel, F.S. FexCo1-x-doped titanium oxide nanotubes as effective photocatalysts for hydrogen extraction from ammonium phosphate. Int. J. Hydrogen Energy 2018, 43, 7990–7997. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lu, H.; Liang, L.; Wang, Y.; Qiu, J.; Shi, X.; Wang, Y.; Yao, J. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method. Appl. Surf. Sci. 2015, 344, 112–118. [Google Scholar] [CrossRef]
- Chaudhari, N.S.; Warule, S.S.; Dhanmane, S.A.; Kulkarni, M.V.; Valant, M.; Kale, B.B. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S. Nanoscale 2013, 5, 9383–9390. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Ho, W.; Zhang, L.; Zou, Z.; Lee, S. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. J. Hazard. Mater. 2009, 169, 77–87. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, M.; Shi, J.; Shangguan, W. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int. J. Hydrogen Energy 2006, 31, 1326–1331. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid State Electrochem. 2015, 19, 1359–1366. [Google Scholar] [CrossRef]
- Carmichael, P.; Hazafy, D.; Bhachu, D.S.; Mills, A.; Darr, J.A.; Parkin, I.P. Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation. Phys. Chem. Chem. Phys. 2013, 15, 16788–16794. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Chen, A. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. J. Photochem. Photobiol. A-Chem. 2008, 195, 47–53. [Google Scholar] [CrossRef]
- Zhu, H.X.; Liu, J.M. First principles calculations of electronic and optical properties of Mo and C co-doped anatase TiO2. Appl. Phys. A-Mater. Sci. Process. 2014, 117, 831–839. [Google Scholar] [CrossRef]
- Diao, W.; He, J.; Wang, Q.; Rao, X.; Zhang, Y. K, Na and Cl co-doped TiO2 nanorod arrays on carbon cloth for efficient photocatalytic degradation of formaldehyde under UV/visible LED irradiation. Catal. Sci. Technol. 2021, 11, 230–238. [Google Scholar] [CrossRef]
- Filippatos, P.-P.; Soultati, A.; Kelaidis, N.; Petaroudis, C.; Alivisatou, A.-A.; Drivas, C.; Kennou, S.; Agapaki, E.; Charalampidis, G.; Yusoff, A.R.b.M.; et al. Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: A theoretical and experimental approach. Sci. Rep. 2021, 11, 5700. [Google Scholar] [CrossRef]
- Meng, S.; Zhang, J.; Chen, S.; Zhang, S.; Huang, W. Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Appl. Surf. Sci. 2019, 476, 982–992. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Smith, Y.R.; Sarma, B.; Mohanty, S.K.; Misra, M. Formation of TiO2-WO3 nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. Electrochem. Commun. 2012, 19, 131–134. [Google Scholar] [CrossRef]
- Choudhury, S.; Sasikala, R.; Saxena, V.; Aswal, D.K.; Bhattacharya, D. A new route for the fabrication of an ultrathin film of a PdO-TiO2 composite photocatalyst. Dalton Trans. 2012, 41, 12090–12095. [Google Scholar] [CrossRef]
- Navarrete, M.; Cipagauta-Diaz, S.; Gomez, R. Ga2O3/TiO2 semiconductors free of noble metals for the photocatalytic hydrogen production in a water/methanol mixture. J. Chem. Technol. Biotechnol. 2019, 94, 3457–3465. [Google Scholar] [CrossRef]
- Gholami, M.; Shirzad-Siboni, M.; Farzadkia, M.; Yang, J.-K. Synthesis, characterization, and application of ZnO/TiO2 nanocomposite for photocatalysis of a herbicide (Bentazon). Desalination Water Treat. 2016, 57, 13632–13644. [Google Scholar] [CrossRef]
- Chen, J.-Z.; Chen, T.-H.; Lai, L.-W.; Li, P.-Y.; Liu, H.-W.; Hong, Y.-Y.; Liu, D.-S. Preparation and characterization of surface photocatalytic activity with NiO/TiO2 nanocomposite structure. Materials 2015, 8, 4273–4286. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, Z.; Eftekhari, E.; Huo, Z.; Li, X.; Tade, M.O.; Yan, C.; Yan, Z.; Li, C.; Li, Q.; et al. High performance heterojunction photocatalytic membranes formed by embedding Cu2O and TiO2 nanowires in reduced graphene oxide. Catal. Sci. Technol. 2018, 8, 1704–1711. [Google Scholar] [CrossRef] [Green Version]
- Morales-Torres, S.; Pastrana-Martinez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Design of graphene-based TiO2 photocatalysts-a review. Environ. Sci. Pollut. Res. 2012, 19, 3676–3687. [Google Scholar] [CrossRef]
- Gao, P.; Sun, D.D. Ultrasonic preparation of hierarchical Graphene-Oxide/TiO2 composite microspheres for efficient photocatalytic hydrogen production. Chem.-Asian J. 2013, 8, 2779–2786. [Google Scholar] [CrossRef]
- Kong, D.; Zhao, M.; Li, S.; Huang, F.; Song, J.; Yuan, Y.; Shen, Y.; Xie, A. Synthesis of TiO2/rGO nanocomposites with enhanced photoelectrochemical performance and photocatalytic activity. Nano 2016, 11, 1650007. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Li, H.-P.; Cui, X.-L. Preparation and Photocatalytic Activity for Hydrogen evolution of TiO2/graphene sheets composite. Chin. J. Inorg. Chem. 2009, 25, 1903–1907. [Google Scholar]
- Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide composites. Nano Res. 2011, 4, 795–806. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, H.; Wang, Y.; Wang, S.; Li, Z.; Sun, Q. Construction of three-dimensional g-C3N4/Gr-CNTs/TiO2 Z-scheme catalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 2020, 510, 145494. [Google Scholar] [CrossRef]
- Chiang, H.-H.; Wang, S.-H.; Chou, H.-Y.; Huang, C.-C.; Tsai, T.-L.; Yang, Y.-C.; Lee, J.-W.; Lin, T.-Y.; Wu, Y.-J.; Chen, C.-C. Surface modification of ato photocatalyst on its bactericidal effect against Escherichia coli. J. Mar. Sci. Technol.-Taiwan 2014, 22, 269–276. [Google Scholar]
- Zhou, X.M. TiO2-supported single-atom catalysts for photocatalytic reactions. Acta Phys.-Chim. Sin. 2021, 37, 2008064. [Google Scholar]
- Bernareggi, M.; Chiarello, G.L.; West, G.; Ratova, M.; Ferretti, A.M.; Kelly, P.; Selli, E. Cu and Pt clusters deposition on TiO2 powders by DC magnetron sputtering for photocatalytic hydrogen production. Catal. Today 2019, 326, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Dozzi, M.V.; Brocato, S.; Marra, G.; Tozzola, G.; Meda, L.; Selli, E. Aqueous ammonia abatement on Pt- and Ru-modified TiO2: Selectivity effects of the metal nanoparticles deposition method. Catal. Today 2017, 287, 148–154. [Google Scholar] [CrossRef]
- Zheng, Z.; Murakamia, N.; Liu, J.; Teng, Z.; Zhang, Q.; Cao, Y.; Cheng, H.; Ohno, T. Development of plasmonic photocatalyst by site-selective loading of bimetallic nanoparticles of Au and Ag on titanium(IV) oxide. ChemCatChem 2020, 12, 3783–3792. [Google Scholar] [CrossRef]
- Luo, J.; Li, D.; Yang, Y.; Liu, H.; Chen, J.; Wang, H. Preparation of Au/reduced graphene oxide/hydrogenated TiO2 nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting. J. Alloys Compd. 2016, 661, 380–388. [Google Scholar] [CrossRef]
- Liu, E.; Kang, L.; Yang, Y.; Sun, T.; Hu, X.; Zhu, C.; Liu, H.; Wang, Q.; Li, X.; Fan, J. Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting. Nanotechnology 2014, 25, 165401. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.-Z.; Cao, C.-Y.; Li, S.-H.; Tang, Y.-X.; Wang, L.-N.; Qi, N.; Huang, J.-Y.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y.-K. In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale 2016, 8, 5226–5234. [Google Scholar] [CrossRef]
- Barrios, C.E.; Albiter, E.; Jimenez, J.; Tiznado, H.; Romo-Herrera, J.; Zanella, R. Photocatalytic hydrogen production over titania modified by gold–Metal (palladium, nickel and cobalt) catalysts. Int. J. Hydrogen Energy 2016, 41, 23287–23300. [Google Scholar] [CrossRef]
- Monamary, A.; Vijayalakshmi, K. Substantial effect of palladium overlayer deposition on the H2 sensing performance of TiO2/ITO nanocomposite. Ceram. Int. 2018, 44, 22957–22962. [Google Scholar] [CrossRef]
- Vallejo, W.; Rueda, A.; Diaz-Uribe, C.; Grande, C.; Quintana, P. Photocatalytic activity of graphene oxide-TiO2 thin films sensitized by natural dyes extracted from Bactris guineensis. R. Soc. Open Sci. 2019, 6, 181824. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.W.; Guan, X.J.; Zhou, Z.H.; Liu, H.P.; Guo, L.J. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photocatalytic H2 production under visible-light irradiation. J. Nanopart. Res. 2015, 17, 252. [Google Scholar] [CrossRef]
- Murcia, J.J.; Avila-Martinez, E.G.; Rojas, H.; Cubillos, J.; Ivanova, S.; Penkova, A.; Laguna, O.H. Powder and nanotubes titania modified by dye sensitization as photocatalysts for the organic pollutants elimination. Nanomaterials 2019, 9, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, H.B.; Di Iorio, Y.; Meichtry, J.M.; Grela, M.A.; Litter, M.I.; San Roman, E. Evidence on dye clustering in the sensitization of TiO2 by aluminum phthalocyanine. Photochem. Photobiol. Sci. 2013, 12, 1984–1990. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.M.; Sun, H.; Shan, Y.K. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. J. Photochem. Photobiol. A-Chem. 2005, 169, 101–107. [Google Scholar] [CrossRef]
- Wahyuningsih, S.; Purnawan, C.; Kartikasari, P.A.; Praistia, N. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO2 electrode. Chem. Pap. 2014, 68, 1248–1256. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.M.; Lu, X.L.; Yu, X.; Kong, M.H.; Duan, X.D.; Qin, G.; Zhao, Y.H.; Wang, Z.L.; Dionysiou, D.D. Molybdenum disulfide nanosheets vertically grown on self-supported titanium dioxide/nitrogen-doped carbon nanofiber film for effective hydrogen peroxide decomposition and “memory catalysis”. J. Colloid Interface Sci. 2021, 596, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Ikeue, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on titanium oxides prepared within zeolites and mesoporous molecular sieves. Electrochemistry 2002, 70, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Rasalingam, S.; Kibombo, H.S.; Wu, C.-M.; Budhi, S.; Peng, R.; Baltrusaitis, J.; Koodali, R.T. Influence of Ti-O-Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catal. Commun. 2013, 31, 66–70. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater. 2008, 20, 2711–2718. [Google Scholar] [CrossRef]
- Najafabadi, A.T.; Taghipour, F. Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles. Energy Convers. Manag. 2014, 82, 106–113. [Google Scholar] [CrossRef]
- Xu, Y.M.; Langford, C.H. Enhanced photoactivity of a titanium(iv) oxide-supported on ZSM5 and zeolite-a at low-coverage. J. Phys. Chem. 1995, 99, 11501–11507. [Google Scholar] [CrossRef]
- Kim, H.J.; Shul, Y.G.; Han, H.S. Photocatalytic properties of silica-supported TiO2. Top. Catal. 2005, 35, 287–293. [Google Scholar] [CrossRef]
- Yin, J.W.; Xing, Z.P.; Kuang, J.Y.; Li, Z.Z.; Li, M.; Jiang, J.J.; Tan, S.Y.; Zhu, Q.; Zhou, W. Bi plasmon-enhanced mesoporous Bi2MoO6/Ti3+ self-doped TiO2 microsphere heterojunctions as efficient visible-light-driven photocatalysts. J. Alloys Compd. 2018, 750, 659–668. [Google Scholar] [CrossRef]
- Xing, M.Y.; Zhang, J.L.; Qiu, B.C.; Tian, B.Z.; Anpo, M.; Che, M. A Brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 2015, 11, 1920–1929. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.Z.; Jiang, H.B.; Qiao, S.Z.; Yang, H.G.; Lu, G.Q. Synthesis of high-reactive facets dominated anatase TiO2. J. Mater. Chem. 2011, 21, 7052–7061. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zeng, Y.; Huang, T.; Piao, L.; Liu, M. Controlled synthesis of anatase TiO2 single crystals with dominant {001} facets from TiO2 powders. ChemPlusChem 2012, 77, 1017–1021. [Google Scholar] [CrossRef]
- Wang, W.; Lu, C.-H.; Ni, Y.-R.; Song, J.-B.; Su, M.-X.; Xu, Z.-Z. Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catal. Commun. 2012, 22, 19–23. [Google Scholar] [CrossRef]
- Shang, Q.; Tan, X.; Yu, T.; Zhang, Z.; Zou, Y.; Wang, S. Efficient gaseous toluene photoconversion on graphene-titanium dioxide nanocomposites with dominate exposed {001} facets. J. Colloid Interface Sci. 2015, 455, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Cheng, X.; Liu, B.; Guo, Z.; Jin, M.; Zhang, C. Enhanced photoredox water splitting of Sb-N donor-acceptor pairs in TiO2. Inorg. Chem. Front. 2019, 6, 2404–2411. [Google Scholar] [CrossRef]
- Koci, K.; Troppova, I.; Edelmannova, M.; Starostka, J.; Matejova, L.; Lang, J.; Reli, M.; Drobna, H.; Rokicinska, A.; Kustrowski, P.; et al. Photocatalytic decomposition of methanol over La/TiO2 materials. Environ. Sci. Pollut. Res. 2018, 25, 34818–34825. [Google Scholar] [CrossRef]
- Bharatvaj, J.; Preethi, V.; Kanmani, S. Hydrogen production from sulphide wastewater using Ce3+-TiO2 photocatalysis. Int. J. Hydrogen Energy 2018, 43, 3935–3945. [Google Scholar] [CrossRef]
- Agegnehu, A.K.; Pan, C.J.; Tsai, M.C.; Rick, J.; Su, W.N.; Lee, J.F.; Hwang, B.J. Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int. J. Hydrogen Energy 2016, 41, 6752–6762. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Ahmed, E.; Amen, M.T.; Abdelkareem, M.A.; Farghali, A.A. N-doped Ni/C/TiO2 nanocomposite as effective photocatalyst for water splitting. Mater. Lett. 2018, 210, 317–320. [Google Scholar] [CrossRef]
- Gao, L.S.; Zhang, S.N.; Zou, X.X.; Wang, J.F.; Su, J.; Chen, J.S. Oxygen vacancy engineering of titania-induced by Sr2+ dopants for visible-light-driven hydrogen evolution. Inorg. Chem. 2021, 60, 32–36. [Google Scholar] [CrossRef]
- Xu, J.C.; Zhang, J.J.; Cai, Z.Y.; Huang, H.; Huang, T.H.; Wang, P.; Wang, X.Y. Facile and large-scale synthesis of defective black TiO2-x(B) nanosheets for efficient visible-light-driven photocatalytic hydrogen evolution. Catalysts 2019, 9, 1048. [Google Scholar] [CrossRef] [Green Version]
- Barakat, N.A.M.; Erfan, N.A.; Mohammed, A.A.; Mohamed, S.E.I. Ag-decorated TiO2 nanofibers as Arrhenius equation-incompatible and effective photocatalyst for water splitting under visible light irradiation. Colloids Surf. A-Physicochem. Eng. Asp. 2020, 604, 125307. [Google Scholar] [CrossRef]
- Dang, H.F.; Dong, X.F.; Dong, Y.C.; Zhang, Y.; Hampshire, S. TiO2 nanotubes coupled with nano-Cu(OH)2 for highly efficient photocatalytic hydrogen production. Int. J. Hydrogen Energy 2013, 38, 2126–2135. [Google Scholar] [CrossRef]
- Diaz, L.; Rodriguez, V.D.; Gonzalez-Rodriguez, M.; Rodriguez-Castellon, E.; Algarra, M.; Nunez, P.; Moretti, E. M/TiO2 (M = Fe, Co, Ni, Cu, Zn) catalysts for photocatalytic hydrogen production under UV and visible light irradiation. Inorg. Chem. Front. 2021, 8, 3491–3500. [Google Scholar] [CrossRef]
- El-Bery, H.M.; Abdelhamid, H.N. Photocatalytic hydrogen generation via water splitting using ZIF-67 derived Co3O4@C/TiO2. J. Environ. Chem. Eng. 2021, 9, 105702. [Google Scholar] [CrossRef]
- Fujita, S.; Kawamori, H.; Honda, D.; Yoshida, H.; Arai, M. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Appl. Catal. B-Environ. 2016, 181, 818–824. [Google Scholar] [CrossRef]
- Han, C.; Wang, Y.; Lei, Y.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 2015, 8, 1199–1209. [Google Scholar] [CrossRef]
- Kokporka, L.; Onsuratoom, S.; Puangpetch, T.; Chavadej, S. Sol-gel-synthesized mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystals and their photocatalytic sensitized H2 production activity under visible light irradiation. Mater. Sci. Semicond. Process. 2013, 16, 667–678. [Google Scholar] [CrossRef]
- Mou, Z.G.; Wu, Y.J.; Sun, J.H.; Yang, P.; Du, Y.K.; Lu, C. TiO2 Nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 2014, 6, 13798–13806. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Thuan, D.V.; Pham, T.D.; Tung, M.H.T.; Truc, N.T.T.; Vo, D.V.N. Advanced surface of fibrous activated carbon immobilized with FeO/TiO2 for photocatalytic evolution of hydrogen under visible light. Chem. Eng. Technol. 2020, 43, 752–761. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Q.Q.; Huang, J.Q.; Zhu, C.; Deng, Z.H.; Shi, H.L.; Wu, L.; Liu, Z.G.; Cao, Y.G. Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (001) orientation. Appl. Surf. Sci. 2014, 292, 161–164. [Google Scholar] [CrossRef]
- Ma, J.; Tan, X.; Yu, T.; Li, X. Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive {001} TiO2 crystal facets and its visible-light photocatalytic activity. Int. J. Hydrogen Energy 2016, 41, 3877–3887. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Enhanced photocatalytic H2 production activity of graphene-modified titania nanosheets. Nanoscale 2011, 3, 3670–3678. [Google Scholar] [CrossRef]
- Chu, L.; Lin, Y.; Liu, Y.; Wang, H.; Zhang, Q.; Li, Y.; Cao, Y.; Yu, H.; Peng, F. Preparation of CdS-CoSx photocatalysts and their photocatalytic and photoelectrochemical characteristics for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 27795–27805. [Google Scholar] [CrossRef]
- Dong, J.; Duan, L.; Wu, Q.; Yao, W. Facile preparation of Pt/CdS photocatalyst by a modified photoreduction method with efficient hydrogen production. Int. J. Hydrogen Energy 2018, 43, 2139–2147. [Google Scholar] [CrossRef]
- Kondo, T.; Nagata, M. Cu-doped ZnS/zeolite composite photocatalysts for hydrogen production from aqueous S2−/SO32− Solutions. Chem. Lett. 2017, 46, 1797–1799. [Google Scholar] [CrossRef]
- Qiao, F.; Liu, W.; Yang, J.; Yuan, J.; Sun, K.; Liu, P.F. Hydrogen production performance and theoretical mechanism analysis of chain-like ZnO/ZnS heterojunction. Int. J. Hydrogen Energy 2023, 48, 953–963. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, D.; Xiao, B.; Xian, Y.; Zhang, Q.; Wang, S.; Liu, J.; Wang, P.; Hu, X. An efficient photocatalytic system under visible light: In-situ growth cocatalyst Ni2P on the surface of CdS. J. Environ. Chem. Eng. 2022, 10, 107822. [Google Scholar] [CrossRef]
- Zou, Y.; Guo, C.; Cao, X.; Zhang, L.; Chen, T.; Guo, C.; Wang, J. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution. J. Environ. Chem. Eng. 2021, 9, 106270. [Google Scholar] [CrossRef]
Fuels | Heat of Combustion (kJ·mol−1) | Heat of Combustion (kJ·kg−1) | Ignition Point (°C) |
---|---|---|---|
hydrogen | 285.8 | 1.42 × 105 | 585 |
coal | - | 8.36 × 103~3.06 × 104 | 300~700 |
gasoline | - | 4.31 × 104 | 427 |
diesel | - | 4.26 × 104 | 220 |
kerosene | - | 4.31 × 104 | 80 |
natural gas | - | 3.89 × 104 kJ·m−3 | 650 |
wood | - | 1.2 × 104 | 200~290 |
ethanol | 1366.8 | 2.97 × 104 | 12 |
methane | 890.3 | 5.55 × 104 | 538 |
butane | 2653 | 4.56 × 104 | 365 |
acetone | 1788.7 | 3.08 × 104 | 465 |
graphite | 393.7 | 3.28 × 104 | ~650 |
Methods | Advantages | Disadvantages | Ref. |
---|---|---|---|
Reduced by H2 | Strong reducing ability, no impurities introduced, and easy control on the density of oxygen defects by adjusting reaction time. | High temperature, high energy consumption, time-consuming, and high risk. | [65,67,68,69] |
Reduced by chemical reductants such as NH3, NaBH4, and carbon | Mild reaction conditions and low energy consumption. | Difficult control on the density of oxygen defects and easy introduction of impurities. | [56,70,71,72] |
Prepared in anoxic environment | Convenient operation and can easily obtain products in large quantities. | High temperature, high energy consumption, and time consuming. | [78,79,82] |
Pulsed laser irradiation | High reactivity and reducing efficiency and convenient operation. | Special equipment needed. | [88,91,92] |
Pulsed laser deposition | Convenient operation, easy control on the density of oxygen defects by adjusting the partial pressure of O2 and laser power density, and easily obtains special morphological structures of products. | Special equipment needed. | [80,81] |
Ion doping | Mild reaction conditions and wide selection of approaches. | Unconsciously introduces oxygen defects without controllling their density and easily introduces impurities. | [95,97,98,100,101,107] |
Plasma-assisted deposition | Mild and controllable reaction conditions which is suitable for preparing films. | Special equipment needed and low productivity. | [104,106] |
Ultrasonic-assisted techniques | Convenient operation, low cost, and scalable. | The density of oxygen defects is not easily controlled. | [54,109,112,114] |
Calcination under anoxic conditions | Convenient operation and easy to control the density of oxygen defects by adjusting the partial pressure of O2. | High temperature, high energy consumption, and time consuming. | [117,120,121] |
Molten salt calcination | Convenient operation and easily obtains products in large quantities. | Special TiO2 precursor needed. | [118] |
Catalyst | Light Source | Reaction Condition | H2 Production (mmol h−1) | Ref. |
---|---|---|---|---|
N-doped TiO2 | >400 nm | Water | 0.315 | [139] |
N-doped TiO2 | >420 nm | EDTA-2Na solution | 2.21 | [134] |
(B,N)-co-doped TiO2 | >420 nm | EDTA-2Na solution | 10.45 | [134] |
(Sb,N)-co-doped TiO2 | Xe lamp | 10% aqueous TEOA solution | 2.33 | [189] |
B-doped TiO2 | 365 nm | 0.2 M HCl and absolute ethanol aqueous solution (1:1) | 0.099 | [141] |
N-doped TiO2 | visible light | H2S/0.25 M KOH solution | 8.8 | [137] |
N-doped TiO2 | Xe lamp | 20% aqueous methanol solution | 2.98 | [136] |
S-doped TiO2 | Xe lamp | 1 M NaOH aqueous solution | 0.17 | [140] |
Fe-doped TiO2 | solar light radiation | triammonium phosphate aqueous solution | 4.01 | [135] |
Co-doped TiO2 | solar light radiation | triammonium phosphate aqueous solution | 9.82 | [135] |
(Fe,Co)-co-doped TiO2 | solar light radiation | triammonium phosphate aqueous solution | 17.41 | [135] |
La-doped TiO2 | Hg UVA lamp | 12 M aqueous methanol solution | 80 | [190] |
Ce-doped TiO2 | visible light | sulphide wastewater from refinery | 6.789 | [191] |
H-doped TiO2 | 365 nm | 25% aqueous methanol solution | 0.286 | [145] |
F-doped TiO2 | 365 nm | 25% aqueous methanol solution | 0.0928 | [145] |
Cl-doped TiO2 | 365 nm | 25% aqueous methanol solution | 0.336 | [145] |
V-doped TiO2/rGO | Xe lamp | 20% aqueous methanol solution | 0.12 | [192] |
N-doped Ni/C/TiO2 | Hg lamp | 30% aqueous methanol solution | 0.383 | [193] |
Sr-doped TiO2−δ | >400 nm | water | 1.092 | [194] |
TiO2−δ | >420 nm | 30% aqueous methanol solution | 0.00058 | [195] |
Pt/TiO2−δ | visible light | 50% aqueous methanol solution | 4.9 | [47] |
Ag-decorated TiO2 | Hg lamp | water | 120 | [196] |
Au-decorated TiO2 | 254 nm | aqueous methanol solution | 106 | [168] |
Au,Pd-decorated TiO2 | 254 nm | aqueous methanol solution | 266 | [168] |
Au,Ni-decorated TiO2 | 254 nm | aqueous methanol solution | 256 | [168] |
Au,Co-decorated TiO2 | 254 nm | aqueous methanol solution | 171 | [168] |
Pd-decorated TiO2 | 254 nm | aqueous methanol solution | 59 | [168] |
Ni-decorated TiO2 | 254 nm | aqueous methanol solution | 20 | [168] |
Co-decorated TiO2 | 254 nm | aqueous methanol solution | 10 | [168] |
Cu(OH)2/TiO2 | ultraviolet light | 10% aqueous methanol solution | 14.94 | [197] |
Cu/TiO2 | UV lamp | 25% aqueous methanol solution | 5 | [198] |
Cu/TiO2 | visible light | 25% aqueous methanol solution | 0.22 | [198] |
Co3O4@C/TiO2 | 365 nm | 25% aqueous methanol solution | 11.4 | [199] |
NiO/TiO2 | Hg lamp | glycerol and distilled water | 1.2 | [200] |
g-C3N4/N-TiO2 | Xe lamp | 20% aqueous methanol solution | 8.931 | [201] |
EosinY-sensitized TiO2/ZrO2 | Xe arc lamp | 15% DEA aqueous solution | 1.87 | [202] |
β-Ga2O3/TiO2 | 254 nm | 50% aqueous methanol solution | 0.244 | [150] |
N-doped TiO2/N-doped graphene | Xe lamp | 10% aqueous TEOA solution | 0.039 | [203] |
FeO-TiO2/ACF | visible light | 20% aqueous methanol solution | 6.178 | [204] |
TiO2/ACF | visible light | 20% aqueous methanol solution | 1.672 | [204] |
Cu-doped TiO2 with preferred (001) orientation | Xe lamp | 10% aqueous methanol solution | 0.81 | [205] |
g-C3N4/TiO2 with preferred (001) orientation | >420 nm | 10% aqueous TEOA solution | 0.033 | [206] |
TiO2/graphene with exposed (001) facets | Xe lamp | 25% aqueous methanol solution | 0.736 | [207] |
CdS | >420 nm | 0.5 M Na2S-0.5 M Na2SO3 aqueous solution | 0.063 | [208] |
CdS-CoSx | >420 nm | 0.5 M Na2S-0.5 M Na2SO3 aqueous solution | 0.1686 | [208] |
Pt/CdS | >420 nm | 1.0 M aqueous (NH4)2SO3 solution | 1.158 | [209] |
ZnS | Xe lamp | 0.1 M Na2S-0.1 M Na2SO3 aqueous solution | 0.04 | [210] |
Cu-ZnS/Zeolite | Xe lamp | 0.1 M Na2S-0.1 M Na2SO3 aqueous solution | 0.48 | [210] |
ZnO/ZnS | Xe lamp | 0.064 M Na2S aqueous solution | 0.228 | [211] |
ZnO | Xe lamp | 0.064 M Na2S aqueous solution | 0.138 | [211] |
Ni2P | >420 nm | 0.35 M Na2S-0.25 M Na2SO3 aqueous solution | 0.28 | [212] |
Ni2P/CdS | >420 nm | 0.35 M Na2S-0.25 M Na2SO3 aqueous solution | 16.02 | [212] |
CoP | visible light | Na2S-Na2SO3 aqueous solution | 1.75 | [213] |
CdS/CoP | visible light | Na2S-Na2SO3 aqueous solution | 15.74 | [213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Fu, X.; Peng, Z. A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production. Metals 2023, 13, 1163. https://doi.org/10.3390/met13071163
Chen Y, Fu X, Peng Z. A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production. Metals. 2023; 13(7):1163. https://doi.org/10.3390/met13071163
Chicago/Turabian StyleChen, Yan, Xiuli Fu, and Zhijian Peng. 2023. "A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production" Metals 13, no. 7: 1163. https://doi.org/10.3390/met13071163
APA StyleChen, Y., Fu, X., & Peng, Z. (2023). A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production. Metals, 13(7), 1163. https://doi.org/10.3390/met13071163