Aerodynamics Optimization of Multi-Blade Centrifugal Fan Based on Extreme Learning Machine Surrogate Model and Particle Swarm Optimization Algorithm
Abstract
:1. Introduction
2. Optimization Problem Definition and Description
2.1. Optimization Object
2.2. Optimization Model
2.3. Flowchart of Blade Parameter Optimization
3. The Surrogate Model and Optimization Algorithm
3.1. ELM Surrogate Model
3.2. Particle Swarm Optimization
3.3. Extreme Learning Machine Based on PSO
- Preprocessing of experimental data. The experimental data are divided into training sets and test sets, and then normalized.
- The parameters of particle swarm optimization are transformed into ELM parameters, and then the input and output samples are sent to ELM for prediction and the fitness is calculated.
- The individual and global extremums for all particles are calculated.
- According to the formula of particle renewal speed and position, the particle velocity, position, and weight are updated.
- When the number of iterations reaches the maximum number of iterations set or the fitness meets the requirements, the search is stopped; otherwise, the iterations are repeated until the condition of stopping iterations is reached.
- The PSO-ELM model is completed. The particle position corresponding to the optimal individual is the optimal weights and thresholds of the ELM network, which are substituted into the ELM model.
4. Concrete Optimization Process and Results
4.1. Optimization Structural Model
4.2. CFX Simulation
4.3. Design of Simulation Experiment
5. Results and Discussion
6. Conclusions
- Using the CFD method to solve aerodynamic performance is complex and time-consuming. The PSO-ELM surrogate model set as the fitness function is used in the PSO optimization process. From the evaluation index , the value is equal to 0.99973 for the PSO-ELM model and the value is equal to 0.96299 for the ELM model; the accuracy of the PSO-ELM surrogate model has increased.
- The total pressure is improved from 140.6 Pa to 151 Pa after optimization using simulation experiment design and the PSO algorithm.
- This paper applied the modified ELM model to the optimal design of the multi-blade centrifugal fan and verifies the feasibility of coupling the modified ELM model and PSO algorithm to the blade parametric design. It provides new ideas for the optimal design of multi-blade centrifugal fans and other centrifugal fans. The entire optimization design has certain engineering use value.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.; Liu, X.; Liu, Y.; Qin, W.; Xi, G. Flow Control Mechanism of Blade Tip Bionic Grooves and Their Influence on Aerodynamic Performance and Noise of Multi-Blade Centrifugal Fan. Energies 2022, 15, 3431. [Google Scholar] [CrossRef]
- Ye, J.; Liu, W.; Duan, P.; Huang, X.; Shao, J.; Zhang, Y. Investigation of the Performance and Flow Behaviors of the Multi-blade Centrifugal Fan Based on the Computer Simulation Technology. Wirel. Pers. Commun. 2018, 103, 563–574. [Google Scholar] [CrossRef]
- Li, Z.; Ye, X.; Wei, Y. Investigation on Vortex Characteristics of a Multi-Blade Centrifugal Fan near Volute Outlet Region. Processes 2020, 8, 1240. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Xu, J.; Wang, Z.; Luo, J.; Yang, H.; Zhu, Z.; Zhang, W. Effects of Inclined Volute Tongue Structure on the Internal Complex Flow and Aerodynamic Performance of the Multi-Blade Centrifugal Fan. J. Appl. Fluid Mech. 2022, 15, 901–916. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, K.; Zhang, W.; Zhang, K.; Wang, C.; Jin, W. Optimization of Multi-Blade Centrifugal Fan Blade Design for Ventilation and Air-Conditioning System Based on Disturbance CST Function. Appl. Sci. 2021, 11, 7784. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, H.; Yang, K.; Dong, H.; Gao, Z. Research on blade design method of multi-blade centrifugal fan for building efficient ventilation based on Hicks-Henne function. Sustain. Energy Technol. Assess. 2021, 43, 100971. [Google Scholar] [CrossRef]
- Zhou, S.; Dong, H.; Zhang, K.; Zhou, H.; Jin, W.; Wang, C. Optimal design of multi-blade centrifugal fan based on partial coherence analysis. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 894–907. [Google Scholar] [CrossRef]
- Le Hocine, A.E.B.; Poncet, S.; Fellouah, H. CFD modeling and optimization by metamodels of a squirrel cage fan using OpenFoam and Dakota: Ventilation applications. Build. Environ. 2021, 205, 108145. [Google Scholar] [CrossRef]
- Le Hocine, A.E.B.; Poncet, S.; Fellouah, H. Optimization of a double-intake squirrel cage fan using OpenFoam and metamodels. Int. J. Heat Fluid Flow 2023, 101, 109129. [Google Scholar] [CrossRef]
- Heo, M.-W.; Kim, J.-H.; Seo, T.-W.; Kim, K.-Y. Aerodynamic and aeroacoustic optimization for design of a forward-curved blades centrifugal fan. Proc. Inst. Mech. Eng. Part A J. Power Energy 2016, 230, 154–174. [Google Scholar] [CrossRef]
- Le, T.-L.; Nghia, T.T.; Thong, H.D.; Son, M.H.K. Numerical study of aerodynamic performance and flow characteristics of a centrifugal blower. Int. J. Intell. Unmanned Syst. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Seo, S.-J. Application of Numerical Optimization Technique to Design of Forward-Curved Blades Centrifugal Fan. JSME Int. J. Ser. B 2006, 49, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; You, X.-Y. Inverse design optimisation of a novel range hood based on intelligent algorithms and computational fluid dynamics simulations. Adv. Powder Technol. 2020, 31, 730–745. [Google Scholar] [CrossRef]
- Almasi, S.; Ghorani, M.M.; Haghighi, M.H.S.; Mirghavami, S.M.; Riasi, A. Optimization of a vacuum cleaner fan suction and shaft power using Kriging surrogate model and MIGA. Proc. Inst. Mech. Eng. Part A J. Power Energy 2022, 236, 519–537. [Google Scholar] [CrossRef]
- Zhang, J.; Zangeneh, M. Multi-Point, Multi-Objective Optimisation of Centrifugal Fans by 3D Inverse Design Method. Int. J. Turbomachinery, Propuls. Power 2023, 8, 8. [Google Scholar] [CrossRef]
- Lvo, M.; Damir, V. 3D shape 3D shape optimization of fan vanes for multiple operating regimes subject to efficiency and noiserelated excellence criteria and constraints. Eng. Appl. Comput. Fluid Mech. 2016, 10, 209–277. [Google Scholar]
- Jung, U.-H.; Kim, J.-H.; Kim, J.-H.; Park, C.-H.; Jun, S.-O.; Choi, Y.-S. Optimum design of diffuser in a small high-speed centrifugal fan using CFD & DOE. J. Mech. Sci. Technol. 2016, 30, 1171–1184. [Google Scholar] [CrossRef]
- Zoran, M.; Damir, V.; Ivo, M. Multi-Regime Shape Optimization of Fan Vanes for Energy Conversion Efficiency using CFD, 3D Optical Scanning and Parameterization. Eng. Appl. Comput. Fluid Mech. 2014, 8, 407–421. [Google Scholar]
- Xu, H.; Wei, W.; He, H.; Yang, X. Fluid Analysis and Structure Optimization of Impeller Based on Surrogate Model. Comput. Model. Eng. Sci. 2022, 132, 173–199. [Google Scholar] [CrossRef]
- Xu, Z.; Kong, F.; Zhang, K.; Zhu, H.; Wang, J.; Qiu, N. Optimization of the impeller for hydraulic performance improvement of a high-speed magnetic drive pump. Adv. Mech. Eng. 2022, 14, 16878132221104576. [Google Scholar] [CrossRef]
- Tuchler, S.; Copeland, C. Numerical Optimization of a Micro-wave Rotor Turbine Using a Quasi-two-dimensional CFD Model and a Hybrid Algorithm. Shock Waves 2021, 31, 271–300. [Google Scholar] [CrossRef]
- Hosseinimaab, S.; Tousi, A. Optimizing the performance of a single-shaft micro gas turbine engine by modifying its centrifugal compressor design. Energy Convers. Manag. 2022, 271, 116245. [Google Scholar] [CrossRef]
- Chen, J.; Wu, G. Kriging-assisted design optimization of the impeller geometry for an automotive torque converter. Struct. Multidiscip. Optim. 2018, 57, 2503–2514. [Google Scholar] [CrossRef]
- Zheng, S.; Shao, Z.; Liu, J.; Chen, J.; Li, Y.; Chai, M. Flow characteristics of a centrifugal fan with optimized edge curvatures of an impeller front disk. Proc. Inst. Mech. Eng. Part A J. Power Energy 2023. [Google Scholar] [CrossRef]
- Engin, T. Study of tip clearance effects in centrifugal fans with unshrouded impellers using computational fluid dynamics. Proc. Inst. Mech. Eng. Part A J. Power Energy 2006, 220, 599–610. [Google Scholar] [CrossRef]
- Jeon, W.-H.; Lee, D.-J.; Rhee, H. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise. JSME Int. J. Ser. C 2004, 47, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Rebecca, S.; Martin, B. Validation of the Lattice Boltzmann Method for Simulation of Aerodynamics and Aeroacoustics in a Centrifugal Fan. Acoustics 2020, 2, 735–752. [Google Scholar]
- Kruyt, N.P.; Westra, R.W. On the inverse problem of blade design for centrifugal pumps and fans. Inverse Probl. 2014, 30, 065003. [Google Scholar] [CrossRef]
- Piwowarski, M.; Jakowski, D. Areas of Fan Research—A Review of the Literature in Terms of Improving Operating Efficiency and Reducing Noise Emissions. Energies 2023, 16, 1042. [Google Scholar] [CrossRef]
- Kudela, J.; Matousek, R. Recent advances and applications of surrogate models for finite element method computations: A review. Soft Comput. 2022, 26, 13709–13733. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, W.; Zhang, G.; Liu, D.; Wang, P. Progress in applications of shockwave induced by short pulsed laser on surface processing. Opt. Laser Technol. 2023, 157, 108760. [Google Scholar] [CrossRef]
- Ming, W.; Sun, P.; Zhang, Z.; Qiu, W.; Du, J.; Li, X.; Zhang, Y.; Zhang, G.; Liu, K.; Wang, Y.; et al. A systematic review of machine learning methods applied to fuel cells in performance evaluation, durability prediction, and application monitoring. Int. J. Hydrogen Energy 2023, 48, 5197–5228. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Hao, B.; Wei, S.; Huang, Y.; Zhang, G. Investigation on heat transfer and ablation mechanism of CFRP by different laser scanning directions. Compos. Part B Eng. 2023, 262, 110827. [Google Scholar] [CrossRef]
- Mustafa, A.; Ahmad, T.; Rana, H. Swarm-Based Extreme Learning Machine Models for Global Optimization. Comput. Mater. Contin. 2022, 70, 6339–6362. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Meng, F.; Zhang, Z.; Su, X.; Li, L. Centrifugal fan Blade Optimization Based on Kriging Surrogate model. Chin. Hydraul. Pneum. 2023, 47, 85–91. [Google Scholar]
- Meng, F.; Gong, X.; Du, W.; Wang, L.; Zhao, F.; Li, L. Vibration performance prediction and reliability analysis for rolling bearing. J. Vibroeng. 2021, 23, 327–346. [Google Scholar] [CrossRef]
Reference | Optimization Parameter | Method |
---|---|---|
Xu et al. [1] | Groove width, groove depth, groove center distance, groove number, different groove shapes | CFD simulation design method |
Ye et al. [2] | Inner diameter, bevel-cutting blade | CFD technology, test |
Li et al. [3] | Vortex characteristics | CFD technology |
Wei et al. [4] | Clearance, the inclination angle, the volute tongue | CFD technology, test |
Zhou et al. [5,6,7] | Multi-blade centrifugal fan blade airfoil parameter | 1. CST function parameterization 2. Latin hypercube sampling 3. RBF model 4. Non-dominant sorting genetic algorithm-II |
Alla et al. [8,9] | Multi-blade centrifugal fan impeller and wheel parameter | 1. Latin hypercube sampling 2. Response surface approximation model 3. EGO approach |
Heo et al. [10] | The scroll cut-off angle, the scroll diffuser expansion angle, the diameter ratio of the impeller, the blade exit angle | 1. Latin hypercube sampling 2. Kriging surrogate model 3. Algorithm-II |
Le et al. [11] | Research operating condition on the centrifugal fan performance and flow characteristics, obtaining the topology optimization design | ANSYS software |
Kim et al. [12] | Location of cutoff, radius of cutoff, width of impeller, flow coefficient | Numerical analysis, response surface optimization method |
Structural Parameters | Value (mm) |
---|---|
Height | 180 |
Width | 61 |
Length | 171 |
Diameter | 133 |
Inlet diameter | 110 |
Outlet parameter | 59 × 71 |
Sequence | Position Parameter/° | Shape Parameter/° | Total Pressure/Pa |
---|---|---|---|
1 | 0 | 0 | 49.73 |
2 | 0 | 10 | 69.41 |
3 | 0 | 20 | 91.23 |
4 | 0 | 30 | 106.10 |
5 | 0 | 40 | 99.23 |
6 | 10 | 0 | 50.32 |
7 | 10 | 10 | 77.76 |
8 | 10 | 20 | 110.20 |
9 | 10 | 30 | 129.80 |
10 | 10 | 40 | 140.60 |
11 | 20 | 0 | 49.05 |
12 | 20 | 10 | 71.45 |
13 | 20 | 20 | 119.20 |
14 | 20 | 30 | 134.20 |
15 | 20 | 40 | 150.10 |
16 | 30 | 0 | 43.04 |
17 | 30 | 10 | 70.02 |
18 | 30 | 20 | 103.91 |
19 | 30 | 30 | 109.7 |
20 | 30 | 40 | 130.90 |
21 | 40 | 0 | 30.27 |
22 | 40 | 10 | 74.29 |
23 | 40 | 20 | 101.10 |
24 | 40 | 30 | 86.80 |
25 | 40 | 40 | 80.35 |
Evaluation Index | PSO-ELM | ELM |
---|---|---|
0.99973 | 0.96299 |
Centrifugal Fan | Blade Parameters [pp sp]/(°) | Total Pressure/(Pa) |
---|---|---|
Before optimization | (10.0, 40.0) | 140.6 |
After optimization | (18.0, 39.0) | 151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, F.; Wang, L.; Ming, W.; Zhang, H. Aerodynamics Optimization of Multi-Blade Centrifugal Fan Based on Extreme Learning Machine Surrogate Model and Particle Swarm Optimization Algorithm. Metals 2023, 13, 1222. https://doi.org/10.3390/met13071222
Meng F, Wang L, Ming W, Zhang H. Aerodynamics Optimization of Multi-Blade Centrifugal Fan Based on Extreme Learning Machine Surrogate Model and Particle Swarm Optimization Algorithm. Metals. 2023; 13(7):1222. https://doi.org/10.3390/met13071222
Chicago/Turabian StyleMeng, Fannian, Liujie Wang, Wuyi Ming, and Hongxiang Zhang. 2023. "Aerodynamics Optimization of Multi-Blade Centrifugal Fan Based on Extreme Learning Machine Surrogate Model and Particle Swarm Optimization Algorithm" Metals 13, no. 7: 1222. https://doi.org/10.3390/met13071222
APA StyleMeng, F., Wang, L., Ming, W., & Zhang, H. (2023). Aerodynamics Optimization of Multi-Blade Centrifugal Fan Based on Extreme Learning Machine Surrogate Model and Particle Swarm Optimization Algorithm. Metals, 13(7), 1222. https://doi.org/10.3390/met13071222