Manufacturing of Metal–Polymer Hybrid Parts Using a Desktop 3-Axis Fused Filament Fabrication 3D-Printer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of Demonstrators: Design and Printing Strategy
2.1.1. Direct Assembly Strategy
2.1.2. Surround and Enclose Strategy
2.2. Pullout Tests
2.3. Microscopy
3. Results and Discussion
3.1. Direct Assembly Strategy: Execution and Results
Joint Characteristics and Expected Mechanical Performance
3.2. Surround and Enclose Strategy: Execution and Results
3.2.1. Pullout Test Results
3.2.2. Other Potential Uses and Outlook
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amancio-Filho, S.d.T.; Falck, R.M.M. Method for Producing a Layered Component. Patent No. DE102016121267A1, 7 November 2018. [Google Scholar]
- Falck, R.; Goushegir, S.M.; dos Santos, J.F.; Amancio-Filho, S.T. AddJoining: A Novel Additive Manufacturing Approach for Layered Metal-Polymer Hybrid Structures. Mater. Lett. 2018, 217, 211–214. [Google Scholar] [CrossRef]
- Belei, C.; Pommer, R.; Amancio-Filho, S.T. Optimization of Additive Manufacturing for the Production of Short Carbon Fiber-Reinforced Polyamide/Ti-6Al-4V Hybrid Parts. Mater. Des. 2022, 219, 110776. [Google Scholar] [CrossRef]
- Falck, R.; dos Santos, J.F.; Amancio-Filho, S.T. Microstructure and Mechanical Performance of Additively Manufactured Aluminum 2024-T3/Acrylonitrile Butadiene Styrene Hybrid Joints Using an AddJoining Technique. Materials 2019, 12, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertle, S.; Kleffel, T.; Wörz, A.; Drummer, D. Production of Polymer-Metal Hybrids Using Extrusion-Based Additive Manufacturing and Electrochemically Treated Aluminum. Addit. Manuf. 2020, 33, 101135. [Google Scholar] [CrossRef]
- Oliveira, G.H.M.; Belei, C.; de Carvalho, W.S.; Canto, L.B.; Amancio-Filho, S.T. On the Fully Additive Manufacturing of PC/AlSi10Mg Hybrid Structures. Mater. Lett. 2023, 330, 133378. [Google Scholar] [CrossRef]
- Alhmoudi, A.; Sheikh-Ahmad, J.; Almaskari, F.; Bojanampati, S. Joining of Polymer-Metal Hybrid Structures by Fused Deposition Modelling. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirate, 21–24 February 2022; pp. 1–5. [Google Scholar]
- Englert, L.; Heuer, A.; Engelskirchen, M.K.; Frölich, F.; Dietrich, S.; Liebig, W.V.; Kärger, L.; Schulze, V. Hybrid Material Additive Manufacturing: Interlocking Interfaces for Fused Filament Fabrication on Laser Powder Bed Fusion Substrates. Virtual Phys. Prototyp. 2022, 17, 508–527. [Google Scholar] [CrossRef]
- Bechtel, S.; Meisberger, M.; Klein, S.; Heib, T.; Quirin, S.; Herrmann, H.-G. Estimation of the Adhesion Interface Performance in Aluminum-PLA Joints by Thermographic Monitoring of the Material Extrusion Process. Materials 2020, 13, 3371. [Google Scholar] [CrossRef]
- Bechtel, S.; Schweitzer, R.; Frey, M.; Busch, R.; Herrmann, H.-G. Material Extrusion of Structural Polymer–Aluminum Joints—Examining Shear Strength, Wetting, Polymer Melt Rheology and Aging. Materials 2022, 15, 3120. [Google Scholar] [CrossRef]
- Chueh, Y.-H.; Wei, C.; Zhang, X.; Li, L. Integrated Laser-Based Powder Bed Fusion and Fused Filament Fabrication for Three-Dimensional Printing of Hybrid Metal/Polymer Objects. Addit. Manuf. 2020, 31, 100928. [Google Scholar] [CrossRef]
- Belei, C.; Effertz, P.S.; Meier, B.; Amancio-Filho, S.T. Additive Manufacturing of Metal-Polymer Hybrid Parts: The Influence of as-Printed LPBF Surface Roughness on the Joint Strength. Front. Mater. 2023, 10, 1202281. [Google Scholar] [CrossRef]
- Ali, M.H.; Kurokawa, S.; Shehab, E.; Mukhtarkhanov, M. Development of a Large-Scale Multi-Extrusion FDM Printer, and Its Challenges. Int. J. Lightweight Mater. Manuf. 2023, 6, 198–213. [Google Scholar] [CrossRef]
- Allen, R.J.A.; Trask, R.S. An Experimental Demonstration of Effective Curved Layer Fused Filament Fabrication Utilising a Parallel Deposition Robot. Addit. Manuf. 2015, 8, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Petrovic, V.; Vicente Haro Gonzalez, J.; Jordá Ferrando, O.; Delgado Gordillo, J.; Ramón Blasco Puchades, J.; Portolés Griñan, L. Additive Layered Manufacturing: Sectors of Industrial Application Shown through Case Studies. Int. J. Prod. Res. 2011, 49, 1061–1079. [Google Scholar] [CrossRef]
- Leary, M.; Mazur, M.; Watson, M.; Boileau, E.; Brandt, M. Voxel-Based Support Structures for Additive Manufacture of Topologically Optimal Geometries. Int. J. Adv. Manuf. Technol. 2019, 105, 1–26. [Google Scholar] [CrossRef]
- Vaidya, R.; Anand, S. Optimum Support Structure Generation for Additive Manufacturing Using Unit Cell Structures and Support Removal Constraint. Procedia Manuf. 2016, 5, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; He, Y.; Fu, J. Support Generation for Additive Manufacturing Based on Sliced Data. Int. J. Adv. Manuf. Technol. 2015, 80, 2041–2052. [Google Scholar] [CrossRef]
- Huang, X.; Ye, C.; Mo, J.; Liu, H. Slice Data Based Support Generation Algorithm for Fused Deposition Modeling. Tsinghua Sci. Technol. 2009, 14, 223–228. [Google Scholar] [CrossRef]
- Vaissier, B.; Pernot, J.-P.; Chougrani, L.; Véron, P. Genetic-Algorithm Based Framework for Lattice Support Structure Optimization in Additive Manufacturing. Comput. Aided Des. 2019, 110, 11–23. [Google Scholar] [CrossRef]
- Feng, R.; Li, X.; Zhu, L.; Thakur, A.; Wei, X. An Improved Two-Level Support Structure for Extrusion-Based Additive Manufacturing. Robot. Comput. Integr. Manuf. 2021, 67, 101972. [Google Scholar] [CrossRef]
- Huang, P.; Wang, C.; Chen, Y. Algorithms for Layered Manufacturing in Image Space. Adv. Comput. Inf. Eng. Res. 2014, 1, 377–409. [Google Scholar]
- Rodriguez-Padilla, C.; Cuan-Urquizo, E.; Roman-Flores, A.; Gordillo, J.L.; Vázquez-Hurtado, C. Algorithm for the Conformal 3D Printing on Non-Planar Tessellated Surfaces: Applicability in Patterns and Lattices. Appl. Sci. 2021, 11, 7509. [Google Scholar] [CrossRef]
- Gupta, P.; Guo, Y.; Boddeti, N.; Krishnamoorthy, B. SFCDecomp: Multicriteria Optimized Tool Path Planning in 3D Printing Using Space-Filling Curve Based Domain Decomposition. Int. J. Comput. Geom. Appl. 2021, 31, 193–220. [Google Scholar] [CrossRef]
- Pérez-Castillo, J.L.; Cuan-Urquizo, E.; Roman-Flores, A.; Olvera-Silva, O.; Romero-Muñoz, V.; Gómez-Espinosa, A.; Ahmad, R. Curved Layered Fused Filament Fabrication: An Overview. Addit. Manuf. 2021, 47, 102354. [Google Scholar] [CrossRef]
- Llewellyn-Jones, T.; Allen, R.; Trask, R. Curved Layer Fused Filament Fabrication Using Automated Toolpath Generation. 3D Print. Addit. Manuf. 2016, 3, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Lai, L.M.-L.; Qi, D.; Lai, Y.-H.; Yuen, M.M.-F. Efficient Slicing Procedure Based on Adaptive Layer Depth Normal Image. Comput. Aided Des. 2011, 43, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Nisja, G.A.; Cao, A.; Gao, C. Short Review of Nonplanar Fused Deposition Modeling Printing. Mater. Des. Process. Commun. 2021, 3, e221. [Google Scholar] [CrossRef]
- Belei, C.; Joeressen, J.; Amancio-Filho, S.T. Fused-Filament Fabrication of Short Carbon Fiber-Reinforced Polyamide: Parameter Optimization for Improved Performance under Uniaxial Tensile Loading. Polymers 2022, 14, 1292. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Rizvi, G.M.; Bellehumeur, C.T.; Gu, P. Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Jacob, T.; Wiik, I. Omega-Stringer zum Versteifen eines flächigen Bauteils und Verfahren zum Herstellen eines Faserverbundbauteils für Schalensegmente. Patent No. DE102008032834B4, 14 July 2013. [Google Scholar]
- Parla, G.C.; Ajenjo, F.M.; Rincon, J.C.; Medias, M.M. Method for Manufacturing Carbon Fiber Panels Stiffened with Omega Stringers. U.S. Patent No. 10,549,492, 29 May 2015. [Google Scholar]
- Bertolini, J.; Castanié, B.; Barrau, J.-J.; Navarro, J.-P. An Experimental and Numerical Study on Omega Stringer Debonding. Compos. Struct. 2008, 86, 233–242. [Google Scholar] [CrossRef]
- Meier, B.; Godja, N.; Warchomicka, F.; Belei, C.; Schäfer, S.; Schindel, A.; Palcynski, G.; Kaindl, R.; Waldhauser, W.; Sommitsch, C. Influences of Surface, Heat Treatment, and Print Orientation on the Anisotropy of the Mechanical Properties and the Impact Strength of Ti 6Al 4V Processed by Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2022, 6, 87. [Google Scholar] [CrossRef]
- Roche, A.A.; Behme, A.K.; Solomon, J.S. A Three-Point Flexure Test Configuration for Improved Sensitivity to Metal/ Adhesive Interfacial Phenomena. Int. J. Adhes. Adhes. 1982, 2, 249–254. [Google Scholar] [CrossRef]
- Genty, S.; Sauvage, J.-B.; Tingaut, P.; Aufray, M. Experimental and Statistical Study of Three Adherence Tests for an Epoxy-Amine/Aluminum Alloy System: Pull-Off, Single Lap Joint and Three-Point Bending Tests. Int. J. Adhes. Adhes. 2017, 79, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Birro, T.V.; Aufray, M.; Paroissien, E.; Lachaud, F. Assessment of Interface Failure Behaviour for Brittle Adhesive Using the Three-Point Bending Test. Int. J. Adhes. Adhes. 2021, 110, 102891. [Google Scholar] [CrossRef]
- van der Leeden, M.; Frens, G. Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Adv. Eng. Mater. 2002, 4, 280–289. [Google Scholar] [CrossRef]
- Shah, C.; Bosse, S.; von Hehl, A. Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics. Materials 2022, 15, 4645. [Google Scholar] [CrossRef] [PubMed]
Demo. Type | Printing Strategy | Materials | Enclosure | Filling of Space under Stringer | |
---|---|---|---|---|---|
Stringer | Panel | ||||
1 | Direct assembly | Coating layer: PA6/66 Subsequent layers: PA-CF | Rolled, sandblasted Ti-6Al-4V | No | Honeycomb structure (normal to panel) |
2 | Surround and enclose | LPBF Ti-6Al-4V | PA-CF | Yes | None |
Parameter | Value |
---|---|
Particles | Corundum (Al2O3) |
Pressure | 4.5 bar |
Particle size (average) | 35 µm |
Incidence Angle | 90° |
Distance nozzle—substrate | 100 mm |
Nozzle diameter | 3 mm |
Process Variables | Coating Layer (PA 6/66) | 3D Model (PA-CF) |
---|---|---|
Printing bed temperature | 140 °C | 120 °C |
Printing speed | 5 mm/s | 80 mm/s |
Layer height | 0.4 mm | 0.2 mm |
Nozzle diameter | 0.4 mm | 0.6 mm |
Extrusion temperature | 280 °C | 280 °C |
Road width | 0.4 mm | 0.4 mm |
Distance between roads | 0.4 mm | 0.4 mm |
Type | d (mm) | e (mm) | s (mm) | m (mm) | A (mm²) |
---|---|---|---|---|---|
M6 | 6.0 | 11.1 | 10.0 | 3.2 | 50.3 |
M8 | 8.0 | 14.4 | 13.0 | 4.0 | 82.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belei, C.; Meier, B.; Amancio-Filho, S.T. Manufacturing of Metal–Polymer Hybrid Parts Using a Desktop 3-Axis Fused Filament Fabrication 3D-Printer. Metals 2023, 13, 1262. https://doi.org/10.3390/met13071262
Belei C, Meier B, Amancio-Filho ST. Manufacturing of Metal–Polymer Hybrid Parts Using a Desktop 3-Axis Fused Filament Fabrication 3D-Printer. Metals. 2023; 13(7):1262. https://doi.org/10.3390/met13071262
Chicago/Turabian StyleBelei, Carlos, Benjamin Meier, and Sergio T. Amancio-Filho. 2023. "Manufacturing of Metal–Polymer Hybrid Parts Using a Desktop 3-Axis Fused Filament Fabrication 3D-Printer" Metals 13, no. 7: 1262. https://doi.org/10.3390/met13071262
APA StyleBelei, C., Meier, B., & Amancio-Filho, S. T. (2023). Manufacturing of Metal–Polymer Hybrid Parts Using a Desktop 3-Axis Fused Filament Fabrication 3D-Printer. Metals, 13(7), 1262. https://doi.org/10.3390/met13071262