Improved Soft Magnetic Properties in FeNi@MgO Composites by Sol-Gel-Based Surface Coating and High-Temperature Heat Treatment
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Fabrication of FeNi@MgO SMCs
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shokrollahi, H.; Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Hu, F.; Ni, J.; Feng, S.; Kan, X.; Yang, Y.; Lv, Q.; Liu, X. Soft Magnetic Properties of Fe-6.5 wt% Si/SrFe12O 19 Composites. J. Supercond. Nov. Magn. 2020, 33, 2779–2785. [Google Scholar] [CrossRef]
- Hu, F.; Ni, J.; Feng, S.; Kan, X.; Zhu, R.; Yang, W.; Yang, Y.; Lv, Q.; Liu, X. Low melting glass as adhesive and insulating agent for soft magnetic composites: Case in FeSi powder core. J. Magn. Magn. Mater. 2020, 501, 166480. [Google Scholar] [CrossRef]
- Hemmati, I.; Hosseini, H.M.; Kianvash, A. The correlations between processing parameters and magnetic properties of an iron–resin soft magnetic composite. J. Magn. Magn. Mater. 2006, 305, 147–151. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Cui, Z.; Gao, Z.; Huang, Z.; Wu, Z. Selective oxidation of rare metal oxide insulation layers on particle substrates for optimizing the performance of FeSiCr-based soft magnetic composites. Mater. Des. 2023, 230, 111984. [Google Scholar] [CrossRef]
- Wu, Z.; Kang, L.; Liao, X.; Kong, H.; Wang, H.; Wang, R. Realizing high-resistivity and low-loss Fe–Si–Al based soft magnetic powder cores through interfacial chemistry regulation. Ceram. Int. 2023, 49, 19870–19878. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, W.; Guo, T.; Jiang, Y.; Yan, M. Effect of processing parameters on the magnetic properties and microstructures of molybdenum permalloy compacts made by powder metallurgy. J. Alloys Compd. 2014, 594, 153–157. [Google Scholar] [CrossRef]
- Yao, Z.; Peng, Y.; Xia, C.; Yi, X.; Mao, S.; Zhang, M. The effect of calcination temperature on microstructure and properties of FeNiMo@Al2O3 soft magnetic composites prepared by sol-gel method. J. Alloys Compd. 2020, 827, 154345. [Google Scholar] [CrossRef]
- Perigo, E.A.; Weidenfeller, B.; Kollár, P.; Füzer, J. Past, present, and future of soft magnetic composites. Appl. Phys. Rev. 2018, 5, 031301. [Google Scholar] [CrossRef]
- Neamţu, B.; Pszola, M.; Opriş, A.; Popa, F.; Marinca, T.; Chicinaş, I. Influence of fibres diameter on the AC and DC magnetic characteristics of Fe/Fe3O4 fibres based soft magnetic composites. Ceram. Int. 2021, 47, 1865–1874. [Google Scholar] [CrossRef]
- Ouyang, G.; Chen, X.; Liang, Y.; Macziewski, C.; Cui, J. Review of Fe-6.5 wt% Si high silicon steel—A promising soft magnetic material for sub-kHz application. J. Magn. Magn. Mater. 2019, 481, 234–250. [Google Scholar] [CrossRef]
- Waeckerlé, T.; Fraisse, H.; Furnemont, Q. Soft magnetic FeNi alloys for DC current sensors with high accuracy. J. Magn. Magn. Mater. 2005, 290, 1584–1588. [Google Scholar] [CrossRef]
- Olekšáková, D.; Kollár, P.; Füzer, J. Structure and magnetic properties of powdered and compacted FeNi alloys. J. Electr. Eng. 2017, 68, 163–166. [Google Scholar] [CrossRef]
- Yaghtin, M.; Taghvaei, A.H.; Hashemi, B.; Janghorban, K. Effect of heat treatment on magnetic properties of iron-based soft magnetic composites with Al2O3 insulation coating produced by sol–gel method. J. Alloys Compd. 2013, 581, 293–297. [Google Scholar] [CrossRef]
- Taghvaei, A.; Shokrollahi, H.; Janghorban, K. Properties of iron-based soft magnetic composite with iron phosphate–silane insulation coating. J. Alloys Compd. 2009, 481, 681–686. [Google Scholar] [CrossRef]
- Peng, Y.; Yi, Y.; Li, L.; Yi, J.; Nie, J.; Bao, C. Iron-based soft magnetic composites with Al2O3 insulation coating produced using sol–gel method. Mater. Des. 2016, 109, 390–395. [Google Scholar] [CrossRef]
- Wu, Z.; Fan, X.; Li, G.; Wang, J.; Gan, Z. Intergranular insulated Fe-6.5 wt% Si/SiO2 composite compacts with tunable insulating layer thickness for low core loss applications. RSC Adv. 2015, 5, 67031–67040. [Google Scholar] [CrossRef]
- Geng, K.; Xie, Y.; Xu, L.; Yan, B. Structure and magnetic properties of ZrO2-coated Fe powders and Fe/ZrO2 soft magnetic composites. Adv. Powder Technol. 2017, 28, 2015–2022. [Google Scholar] [CrossRef]
- Lee, S.; Choi, M.; Kim, J. Magnetic properties of pure iron soft magnetic composites coated by manganese phosphates. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Geng, K.; Xie, Y.; Yan, L.; Yan, B. Fe-Si/ZrO2 composites with core-shell structure and excellent magnetic properties prepared by mechanical milling and spark plasma sintering. J. Alloys Compd. 2017, 718, 53–62. [Google Scholar] [CrossRef]
- Rani, N.; Chahal, S.; Kumar, P.; Kumar, A.; Shukla, R.; Singh, S. MgO nanostructures at different annealing temperatures for d0 ferromagnetism. Vacuum 2020, 179, 109539. [Google Scholar] [CrossRef]
- Uozumi, G.; Watanabe, M.; Nakayama, R.; Igarashi, K.; Morimoto, K. Properties of soft magnetic composite with evaporated MgO insulation coating for low iron loss. Mater. Sci. Forum 2007, 534–536, 1361–1364. [Google Scholar]
- Wu, M.; Yuan, J.; Diao, G.; Li, D. Achieving a Combination of Higher Strength and Higher Ductility for Enhanced Wear Resistance of AlCrFeNiTi0. 5 High-Entropy Alloy by Mo Addition. Metals 2022, 12, 1910. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, M.; Kawazoe, Y. Prediction of the mixing enthalpy of alloys. Europhys. Lett. 2002, 57, 526. [Google Scholar] [CrossRef]
- Grant, R.M. Lead Production. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 4439–4442. [Google Scholar]
- Parker, G. Encyclopedia of Materials: Science and Technology. Elsevier Science: Osaka, Japan, 2001. [Google Scholar]
- Taghvaei, A.H.; Ebrahimi, A.; Gheisari, K.; Janghorban, K. Analysis of the magnetic losses in iron-based soft magnetic composites with MgO insulation produced by sol–gel method. J. Magn. Magn. Mater. 2010, 322, 3748–3754. [Google Scholar] [CrossRef]
- Wu, S.; Dong, Y.; Li, X.; Gong, M.; Zhao, R.; Gao, W.; Wu, H.; He, A.; Li, J.; Wang, X. Microstructure and magnetic properties of FeSiCr soft magnetic powder cores with a MgO insulating layer prepared by the sol-gel method. Ceram. Int. 2022, 48, 22278–22286. [Google Scholar] [CrossRef]
- Mahdi, H.S.; Parveen, A.; Agrawal, S.; Azam, A. Microstructural and optical properties of sol gel synthesized CdS nano particles using CTAB as a surfactant. AIP Conf. Proc. 2017, 1832, 050012. [Google Scholar]
- Vesa, J.; Rasilo, P. Permeability estimations of SMC material particles. IEEE Trans. Magn. 2020, 56, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Y.; Pauly, S.; Chang, C.; Wei, R.; Li, F.; Wang, X.-M. Enhanced soft magnetic properties of Fe-based amorphous powder cores by longitude magnetic field annealing. J. Alloys Compd. 2017, 706, 1–6. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Y.; Liu, X.; Lu, H.; Wu, Y.; Zhang, H.; He, A.; Li, J.; Wang, X. Microstructure and soft magnetic properties of Fe85− xSi9. 6Al5. 4Tix composite magnetic powder cores. J. Alloys Compd. 2021, 885, 160924. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Mo, J.; Mao, X.; Luo, Z. The influence of doping Ti on the microstructure and magnetic performances of Fe-6.5 Si soft magnetic composites. J. Alloys Compd. 2018, 766, 769–774. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Yuan, W.; Peng, K. Preparation and magnetic properties of core–shell structured Fe-Si/Fe3O4 composites via in-situ reaction method. J. Magn. Magn. Mater. 2021, 531, 167955. [Google Scholar] [CrossRef]
- Ni, J.; Duan, F.; Feng, S.; Hu, F.; Kan, X.; Liu, X. High performance of FeSiAl/hBN soft magnetic composites. J. Alloys Compd. 2022, 897, 163191. [Google Scholar] [CrossRef]
- Guo, R.; Yu, G.; Zhu, M.; Qiu, Y.; Wu, G.; Zhou, H. Regulation of magnetic and electrical performances in core-shell-structured FeSiCr@ BaTiO3 soft magnetic composites. J. Alloys Compd. 2022, 895, 162724. [Google Scholar] [CrossRef]
- Streckova, M.; Szabo, J.; Batko, I.; Batkova, M.; Bircakova, Z.; Fuzer, J.; Kollar, P.; Kovalcikova, A.; Bures, R.; Medvecky, L. Design of Permalloy–ferrite–polymer soft magnetic composites doped by ferrite nanoparticles and visualization of magnetic domains. Bull. Mater. Sci. 2020, 43, 37. [Google Scholar] [CrossRef]
- Lin, S.; Zhou, Z.; Jin, J.; Hu, X.; Li, S.; Ju, N. Effect of SiO2/Organosilicone Double Insulation Coating Processes on the Properties of Ferrosilicon Magnetic Cores. Magnetochemistry 2023, 9, 126. [Google Scholar] [CrossRef]
Sample | Permeability, μe | Core Loss, Pcv (kW/m3) | Core Loss, Pcv (kW/m3) | DC-Bias (%) |
---|---|---|---|---|
50 kHz | 50 kHz/100 mT | 100 kHz/100 mT | 100 Oe, 50 kHz | |
FeNi@MK_700 °C | 56.31 | 403.2 | 1238.6 | 84 |
FeNi@MK_750 °C | 58.47 | 425.6 | 1385.9 | 83 |
FeNi@MK_800 °C | 61.52 | 3540.0 | 12,990.0 | 80 |
FeNi@MK_850 °C | 41.93 | 16,480.0 | 46,150.0 | 85 |
FeNi@MgO@MK_700 °C | 56.99 | 387.7 | 1171.8 | 82 |
FeNi@MgO@MK_750 °C | 59.07 | 438.9 | 1397.8 | 81 |
FeNi@MgO@MK_800 °C | 65.43 | 561.6 | 1895.4 | 74 |
FeNi@MgO@MK_850 °C | 66.55 | 1674.9 | 6085.7 | 74 |
Composites | Heat-Treatment Temperature (°C) | Permeability, μe | DC-Bias (%) @100 Oe | Pcv (mW/cc) (Measurement Condition) | Ref. |
---|---|---|---|---|---|
FeNiMo@Al2O3 | 1100 (Powder) | 87.61 | - | 322 (50 kHz, 100 mT) | [8] |
Permalloy@(Phenolic resin+Ferrite) | - | 50.4 | - | 240 (10 kHz, 100 mT) | [38] |
FeSiCr@MgO | 700 | 24 | 92 | 434 (100 kHz, 50 mT) | [29] |
Fe-6.5wt%Si@SiO2 | 500 | 50 | - | 905 (50 kHz, 100 mT) | [39] |
FeNi@MK (This work) | 700 | 56 | 84 | 403 (50 kHz, 100 mT) | - |
FeNi@MgO@MK (This work) | 700 | 57 | 82 | 388 (50 kHz, 100 mT) | - |
FeNi@MgO@MK (This work) | 800 | 65 | 74 | 562 (50 kHz, 100 mT) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Kim, H.-R.; Lee, J.-W.; Jeong, J.-W. Improved Soft Magnetic Properties in FeNi@MgO Composites by Sol-Gel-Based Surface Coating and High-Temperature Heat Treatment. Metals 2023, 13, 1383. https://doi.org/10.3390/met13081383
Park J-H, Kim H-R, Lee J-W, Jeong J-W. Improved Soft Magnetic Properties in FeNi@MgO Composites by Sol-Gel-Based Surface Coating and High-Temperature Heat Treatment. Metals. 2023; 13(8):1383. https://doi.org/10.3390/met13081383
Chicago/Turabian StylePark, Jeong-Hyeon, Hea-Ran Kim, Jung-Woo Lee, and Jae-Won Jeong. 2023. "Improved Soft Magnetic Properties in FeNi@MgO Composites by Sol-Gel-Based Surface Coating and High-Temperature Heat Treatment" Metals 13, no. 8: 1383. https://doi.org/10.3390/met13081383
APA StylePark, J. -H., Kim, H. -R., Lee, J. -W., & Jeong, J. -W. (2023). Improved Soft Magnetic Properties in FeNi@MgO Composites by Sol-Gel-Based Surface Coating and High-Temperature Heat Treatment. Metals, 13(8), 1383. https://doi.org/10.3390/met13081383