Role of Precipitates on the Grain Coarsening of 20CrMnTi Gear Steel during Pseudo-Carburizing
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results
3.1. Microstructure
3.2. Hardness
3.3. Precipitations
3.4. In-Situ Observation
4. Discussion
5. Conclusions
- (1)
- The ratio variation of the C and N elements in the (Ti, Mo)(C, N) precipitates from as-hot rolled steel to the pseudo-carburized steels at 970 and 980 °C, as well as the Baker–Nutting orientation relationship between particles and the matrix, both proved the particles’ redissolution during the pseudo-carburizing process.
- (2)
- The rapid redissolution and ripening of the (Ti, Mo)(C, N) precipitates yielded the coarsening austenite grain during the carburizing process. Furthermore, the redissolution and ripening of the (Ti, Mo)(C, N) precipitates were generated by increasing the pseudo-carburizing temperature.
- (3)
- The pseudo-carburizing temperature played an important role compared to the holding time on the grain coarsening, thus the grain coarsening happened at the prior 1 min during the pseudo-carburizing process at 980 °C with a maximum growing rate of 2.34 μm/min. The growing rate of austenite grains decreased to be 0.79 μm/min, corresponding to the sharp coarsening at 970 °C.
- (4)
- The weight% of Ti and Mo in the developed 20CrMnTi gear steel should be designed to ensure better thermal stability at higher pseudo-carburizing temperatures from the perspective of component optimization.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vella, H. Gear up for green steel. Eng. Technol. 2022, 17, 47–55. [Google Scholar] [CrossRef]
- Ren, Z.D.; Li, B.Z.; Zhou, Q.Z.; Hou, R.D.; Zhang, Y.W. Optimization of high-speed grinding parameters for anti-fatigue performance of 20CrMnTi steel. Int. J. Adv. Manuf. Technol. 2022, 122, 3565–3581. [Google Scholar] [CrossRef]
- Chen, W.; He, X.F.; Yu, W.C.; Shi, J.; Wang, Q.; Yao, K.F. Characterization of the microstructure and hardness of case-carbu rized gear steel. Micron 2021, 144, 103028. [Google Scholar] [CrossRef]
- Fuchs, D.; Tobie, T.; Stahl, K. Challenges in determination of microscopic degree of cleanliness in ultra-clean gear steels. J. Iron Steel Res. Int. 2022, 29, 1583–1600. [Google Scholar] [CrossRef]
- Shen, W.J.; Cheng, G.G.; Hou, Y.Y.; Li, Y.; Zhan, X.L.; Liu, J.J. Effects of the cooling rate and recovery temperature on the growth of AlN precipitates in gear steel. Steel Res. Int. 2022, 93, 2200281. [Google Scholar] [CrossRef]
- Mehtap, A.; Cem, O.A.; Kartal, S.G.; Timur, S. Investigation on structural and tribological properties of borided gear steel after phase homogenization. Surf. Coat. Technol. 2022, 429, 127967. [Google Scholar]
- Chen, D.F.; Zhu, J.Z.; Liu, H.J.; Wei, P.T.; Mao, T.Y. Experimental investigation of the relation between the surface integrity and bending fatigue strength of carburized gears. Sci. China Technol. Sci. 2023, 66, 33–46. [Google Scholar] [CrossRef]
- Mathews, A.; Farahani, H.; Sietsma, J.; Petrov, R.H.; Mecozzi, M.G.; Santofimia, M.J. Microstructures in a carburized steel after isothermal pearlitic treatment. J. Mater. Res. Technol. 2023, 160, 66–75. [Google Scholar] [CrossRef]
- Hong, Y.; Sun, C.; Xiu, S.C.; Xu, C.W.; Ma, L.; Zou, X.N. Strengthening surface generation mechanism of carburizing-assisted grinding. Tribol. Int. 2003, 180, 108300. [Google Scholar] [CrossRef]
- Shi, L.; Cui, X.F.; Li, J.; Jin, G.; Liu, J.N.; Tian, H.L. Improving the wear resistance of heavy-duty gear steels by cyclic carburizing. Tribol. Int. 2022, 171, 107576. [Google Scholar] [CrossRef]
- Lisle, T.J.; Little, C.P.; Aylott, C.J.; Shaw, B.A. Bending fatigue strength of aerospace quality gear steels at ambient and elevated temperatures. Int. J. Fatigue 2022, 164, 107125. [Google Scholar] [CrossRef]
- Zhang, G.Q.; He, X.F.; Zhang, Q.Z.; Wang, W.J.; Wang, M.Q. Comparison of microstructure and heat treatment distortion of gear steels with and without Nb addition. J. Iron Steel Res. Int. 2021, 28, 488–495. [Google Scholar] [CrossRef]
- Wu, J.Z.; Wei, P.T.; Liu, H.J.; Zhang, X.H.; He, Z.Q.; Deng, G.Y. Evaluation of pre-shot peening on improvement of carburizing heat treatment of AISI 9310 gear steel. J. Mater. Res. Technol. 2022, 18, 2784–2796. [Google Scholar] [CrossRef]
- Mengaroni, S.; Bambach, M.D.; Cianetti, F.B. Strengthening improvement on gear steels. Steel Res. Int. 2016, 87, 608–613. [Google Scholar] [CrossRef]
- Parvinzadeh, M.; Karganroudi, S.S.; Omidi, N.; Barka, N.; Khalifa, M. A novel investigation into edge effect reduction of 4340 steel spur gear during induction hardening process. Int. J. Adv. Manuf. Technol. 2021, 113, 605–619. [Google Scholar] [CrossRef]
- Carvalho, A.A.; Rego, R.R.; Colombo, T.C.A.; Oliveira, A.L.R.D.; Righetti, V.A.N.; Thim, G.P.; Galdino, R.S.; Pinto, J.A.C.C.; Freese, S.H.; Coromberk, C.C.E. Surface integrity evolution of Nb-Ti microalloyed steels along the gear manufacturing chain. Int. J. Mech. Sci. 2021, 212, 106807. [Google Scholar] [CrossRef]
- Navin, R.I.; Babu, P.D.; Marimuthu, P.; Phalke, S.S. Distribution of residual compressive stresses in induction hardened steel gears: Effect of parameters on distortion, hardness and phase composition. Met. Sci. Heat Treat. 2021, 63, 449–455. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Fang, C.Y.; Huang, Y.F.; Guo, W.L.; Xing, Z.G.; Wang, H.D.; Zhang, Z.N. Enhancement of fatigue performance of 20Cr2Ni4A gear steel treated by pulsed magnetic treatment: Influence mechanism of residual stress. J. Magn. Magn. Mater. 2021, 540, 168327. [Google Scholar] [CrossRef]
- Tang, H.Y.; Yang, M.S.; Men, W.J.; Lan, P.; Wang, C. Hot deformation behaviour and microstructure of a high-alloy gear steel. Mater. Sci. Technol. 2018, 34, 1228–1238. [Google Scholar] [CrossRef]
- Ahn, S.H.; Heo, J.; Kim, J.; Hwang; Cho, I. The effect of baking heat treatment on the fatigue strength and life of shot peened 4340M landing gear steel. Materials 2020, 13, 5711. [Google Scholar] [CrossRef]
- Barglik, J.; Ducki, K.; Kuc, D.; Smagór, A.; Smalcerz, A. Hardness and microstructure distributions in gear wheels made of steel AISI 4340 after consecutive dual frequency induction hardening. Int. J. Appl. Electrom. 2020, 63, S131–S140. [Google Scholar] [CrossRef]
- Ma, Q.; Zhao, X.; Meng, D.; Dong, C.; Hou, Z.; Misra, R.D.K. Microstructure and hardness evolution during deformation near Ae(3) in a Cr-Mn-Ti gear steel. Steel Res. Int. 2019, 90, 1800332. [Google Scholar] [CrossRef]
- Kong, W.D.; Zhang, D.K.; Tao, Q.; Chen, K.; Wang, J.; Wang, S.J. Wear properties of the deep gradient wear-resistant layer applied to 20CrMnTi gear steel. Wear 2019, 424–425, 216–222. [Google Scholar] [CrossRef]
- Rudenko, S.P.; Val’ko, A.L. Contact fatigue resistance of carburized gears from chromium-nickel steels. Met. Sci. Heat Treat. 2017, 59, 60–64. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, G.G.; Lu, J.L.; Sun, J. The effect of TiN precipitated particles on the austenite grain and hardenability of 20CrMnTi gear steel. Ironmak. Steelmak. 2022, 49, 940–953. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Yuan, Q.; Wang, Z.T.; Qiao, W.W.; Xu, G. Enhanced mechanical properties in a low-carbon ultrafine grain steel by niobium addition. Metall. Mater. Trans. A 2021, 52, 5123–5132. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Yuan, Q.; Wang, Z.T.; Qiao, W.W.; Xu, G. Enhanced thermal stability of the low-carbon ultrafine grain steel with nanoprecipitates. Steel Res. Int. 2022, 93, 2100320. [Google Scholar] [CrossRef]
- Tang, E.; Yuan, Q.; Zhang, R.; Zhang, Z.C.; Mo, J.X.; Liang, W.; Xu, G. On the grain coarsening behavior of 20CrMnTi gear steel during pseudo carburizing: A comparison of Nb-Ti-Mo versus Ti-Mo microalloyed steel. Mater. Charact. 2023, 203, 113138. [Google Scholar] [CrossRef]
- Yuan, Q.; Ren, J.; Mo, J.X.; Zhang, Z.C.; Tang, E.; Xu, G.; Xue, Z.L. Effects of rapid heating on the phase transformation and grain refinement of a low-carbon mciroalloyed steel. J. Mater. Res. Technol. 2023, 23, 3756–3771. [Google Scholar] [CrossRef]
- Gladman, T. The Physical Metallurgy of Microalloyed Steels; The Institute of Materials: London, UK, 1997. [Google Scholar]
Steel | 1 | 2 | 3 | 4 | 5 | 6 | Average |
---|---|---|---|---|---|---|---|
carburized steel at 970 °C | 502.4 | 498.6 | 511.1 | 487.7 | 482.3 | 499.7 | 497.0 ± 23.2 |
carburized steel at 980 °C | 476.2 | 475.4 | 489.4 | 491.2 | 474.3 | 471.8 | 479.7 ± 18.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Yuan, Q.; Tang, E.; Mo, J.; Zhang, Z.; Hu, H.; Xu, G. Role of Precipitates on the Grain Coarsening of 20CrMnTi Gear Steel during Pseudo-Carburizing. Metals 2023, 13, 1422. https://doi.org/10.3390/met13081422
Zhang R, Yuan Q, Tang E, Mo J, Zhang Z, Hu H, Xu G. Role of Precipitates on the Grain Coarsening of 20CrMnTi Gear Steel during Pseudo-Carburizing. Metals. 2023; 13(8):1422. https://doi.org/10.3390/met13081422
Chicago/Turabian StyleZhang, Rui, Qing Yuan, En Tang, Jiaxuan Mo, Zhicheng Zhang, Haijiang Hu, and Guang Xu. 2023. "Role of Precipitates on the Grain Coarsening of 20CrMnTi Gear Steel during Pseudo-Carburizing" Metals 13, no. 8: 1422. https://doi.org/10.3390/met13081422
APA StyleZhang, R., Yuan, Q., Tang, E., Mo, J., Zhang, Z., Hu, H., & Xu, G. (2023). Role of Precipitates on the Grain Coarsening of 20CrMnTi Gear Steel during Pseudo-Carburizing. Metals, 13(8), 1422. https://doi.org/10.3390/met13081422