Structure Investigation of La, Y, and Nd Complexes in Solvent Extraction Process with Liquid Phosphine Oxide, Phosphinic Acid, and Amine Extractants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Thermodynamic Analysis
3.2. Extraction of Y, La, and Nd and their Mixtures
3.3. FT-IR Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, D. Hydrometallurgy of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128139202. [Google Scholar]
- Kołodyńska, D.; Fila, D.; Gajda, B.; Gęga, J.; Hubicki, Z. Rare Earth Elements—Separation Methods Yesterday and Today. In Applications of Ion Exchange Materials in the Environment; Springer International Publishing: Cham, Switzerland, 2019; pp. 161–185. ISBN 9783030104306. [Google Scholar]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. The Use of Computational Thermodynamic for Yttrium Recovery from Rare Earth Elements-Bearing Residue. J. Rare Earths 2021, 39, 201–207. [Google Scholar] [CrossRef]
- Vinhal, J.T.; de Oliveira, R.P.; Coleti, J.L.; Espinosa, D.C.R. Characterization of End-of-Life LEDs: Mapping Critical, Valuable and Hazardous Elements in Different Devices. Waste Manag. 2022, 151, 113–122. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, R.P.; Benvenuti, J.; Espinosa, D.C.R. A Review of the Current Progress in Recycling Technologies for Gallium and Rare Earth Elements from Light-Emitting Diodes. Renew. Sustain. Energy Rev. 2021, 145, 111090. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Kołodyńska, D.; Majdańska, M.; Budnyak, T.M. Lanthanum and Copper Ions Recovery from Nickel-Metal Hydride Cells Leaching Solutions by the Oxide Adsorbent Pyrolox®. J Environ. Chem. Eng. 2019, 7, 1–10. [Google Scholar] [CrossRef]
- Orefice, M.; Binnemans, K. Solvometallurgical Process for the Recovery of Rare-Earth Elements from Nd–Fe–B Magnets. Sep. Purif. Technol. 2021, 258, 117800. [Google Scholar] [CrossRef]
- European Commision. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. Available online: https://ec.europa.eu/docsroom/documents/42849 (accessed on 6 October 2020).
- U.S. Department of Energy. Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2010.
- MCTIC Plano de Ciência, Tecnologia e Inovação Para Minerais Estratéticos. Available online: https://www.inova.rs.gov.br/upload/arquivos/202006/16181825-plano-de-ciencia-tecnologia-e-inovacao-para-minerais-estrategicos.pdf (accessed on 24 August 2020).
- Critical Minerals at Geoscience Australia. Available online: https://www.ga.gov.au/scientific-topics/minerals/critical-minerals#heading-1 (accessed on 24 August 2022).
- Botelho Junior, A.B.; Pinheiro, É.F.; Espinosa, D.C.R.; Tenório, J.A.S.; Baltazar, M. dos P.G. Adsorption of Lanthanum and Cerium on Chelating Ion Exchange Resins: Kinetic and Thermodynamic Studies. Sep. Sci. Technol. 2022, 57, 60–69. [Google Scholar] [CrossRef]
- Jyothi, R.K.; Thenepalli, T.; Ahn, J.W.; Parhi, P.K.; Chung, K.W.; Lee, J.Y. Review of Rare Earth Elements Recovery from Secondary Resources for Clean Energy Technologies: Grand Opportunities to Create Wealth from Waste. J. Clean. Prod. 2020, 267, 122048. [Google Scholar] [CrossRef]
- Premathilake, D.S.; Botelho Junior, A.B.; Tenório, J.A.S.; Espinosa, D.C.R.; Vaccari, M. Designing of a Decentralized Pretreatment Line for EOL-LIBs Based on Recent Literature of LIB Recycling for Black Mass. Metals 2023, 13, 374. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Panda, R.; Rajesh Kumar, J.; Yoo, K.; Lee, J.Y. Review on Hydrometallurgical Recovery of Rare Earth Metals. Hydrometallurgy 2016, 165, 2–26. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, B.; Schreiner, B. Separation Hydrometallurgy of Rare Earth Elements; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-28233-6. [Google Scholar]
- Innocenzi, V.; De Michelis, I.; Ferella, F.; Vegliò, F. Secondary Yttrium from Spent Fluorescent Lamps: Recovery by Leaching and Solvent Extraction. Int. J. Miner. Process. 2017, 168, 87–94. [Google Scholar] [CrossRef]
- Batchu, N.K.; Binnemans, K. Effect of the Diluent on the Solvent Extraction of Neodymium(III) by Bis(2-Ethylhexyl)Phosphoric Acid (D2EHPA). Hydrometallurgy 2018, 177, 146–151. [Google Scholar] [CrossRef]
- Sun, P.P.; Kim, D.H.; Cho, S.Y. Separation of Neodymium and Dysprosium from Nitrate Solutions by Solvent Extraction with Cyanex272. Miner. Eng. 2018, 118, 9–15. [Google Scholar] [CrossRef]
- Zamani, A.A.; Yaftian, M.R. Solvent Extraction of Thorium, Lanthanum and Europium Ions by Bis(2-Ethylhexyl)Phosphoric Acid Using 2-Nitrobenzo-18-Crown-6 as Ion Size Selective Masking Agent. Sep. Purif. Technol. 2004, 40, 115–121. [Google Scholar] [CrossRef]
- Saleh, M.I.; Bari, M.F.; Saad, B. Solvent Extraction of Lanthanum(III) from Acidic Nitrate-Acetato Medium by Cyanex 272 in Toluene. Hydrometallurgy 2002, 63, 75–84. [Google Scholar] [CrossRef]
- Innocenzi, V.; Ferella, F.; de Michelis, I.; Vegliò, F. Treatment of Fluid Catalytic Cracking Spent Catalysts to Recover Lanthanum and Cerium: Comparison between Selective Precipitation and Solvent Extraction. J. Ind. Eng. Chem. 2015, 24, 92–97. [Google Scholar] [CrossRef]
- Pal, U.; Yadav, K.K.; Singh, D.K.; Saha-Dasgupta, T. Extraction Behavior of Yttrium with Aliquat336 from Nitrate and Thiocyanate Media: A Microscopic View from Computational Analysis. Mater. Today Commun. 2021, 28, 102603. [Google Scholar] [CrossRef]
- Han, J.; Wu, G.; Li, Y.; Li, S.; Liao, W. Efficient Separation of High-Abundance Rare Earth Element Yttrium and Lanthanides by Solvent Extraction Using 2-(Bis((2-Ethylhexyl)Oxy)Phosphoryl)-2-Hydroxyacetic Acid. Sep. Purif. Technol. 2023, 306, 122683. [Google Scholar] [CrossRef]
- Pusporini, N.D.; Sediawan, W.B.; Pusparini, W.R.; Ariyanto, T.; Sulistyo, H. Equilibrium Analysis of Neodymium—Yttrium Extraction in Nitric Acid Media with D2EHPA as Solvent. Chem. Thermodyn. Therm. Anal. 2021, 1–2, 100006. [Google Scholar] [CrossRef]
- Rho, B.J.; Sun, P.P.; Cho, S.Y. Recovery of Neodymium and Praseodymium from Nitrate-Based Leachate of Permanent Magnet by Solvent Extraction with Trioctylphosphine Oxide. Sep. Purif. Technol. 2020, 238, 116429. [Google Scholar] [CrossRef]
- Yudaev, P.A.; Kolpinskaya, N.A.; Chistyakov, E.M. Organophosphorous Extractants for Metals. Hydrometallurgy 2021, 201, 105558. [Google Scholar] [CrossRef]
- Tunsu, C.; Ekberg, C.; Foreman, M.; Retegan, T. Targeting Fluorescent Lamp Waste for the Recovery of Cerium, Lanthanum, Europium, Gadolinium, Terbium and Yttrium. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 2016, 125, 199–203. [Google Scholar] [CrossRef]
- Tunsu, C.; Ekberg, C.; Foreman, M.; Retegan, T.; Tunsu, C.; Ekberg, C.; Foreman, M.; Retegan, T.; Tunsu, C.; Ekberg, C.; et al. Studies on the Solvent Extraction of Rare Earth Metals from Fluorescent Lamp Waste Using Cyanex 923. Solvent Extr. Ion Exch. 2014, 32, 650–668. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Espinosa, D.C.R.; Tenório, J.A.S. Selective Separation of Sc(III) and Zr(IV) from the Leaching of Bauxite Residue Using Trialkylphosphine Acids, Tertiary Amine, Tri-Butyl Phosphate and Their Mixtures. Sep. Purif. Technol. 2021, 279, 119798. [Google Scholar] [CrossRef]
- Santanilla, A.J.M.; Aliprandini, P.; Benvenuti, J.; Tenorio, J.A.S.; Espinosa, D.C.R. Structure Investigation for Nickel and Cobalt Complexes Formed during Solvent Extraction with the Extractants Cyanex 272, Versatic 10 and Their Mixtures. Miner. Eng. 2021, 160, 106691. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Dreisinger, D.B.; Espinosa, D.C.R.; Tenório, J.A.S. Pre-Reducing Process Kinetics to Recover Metals from Nickel Leach Waste Using Chelating Resins. Int. J. Chem. Eng. 2018, 2018, 9161323. [Google Scholar] [CrossRef]
- De Almeida Neto, A.F.; Vieira, M.G.A.; da Silva, M.G.C. Insight of the Removal of Nickel and Copper Ions in Fixed Bed through Acid Activation and Treatment with Sodium of Clay. Braz. J. Chem. Eng. 2014, 31, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Demarco, J.; Stefanello Cadore, J.; Veit, H.M.; Bremm Madalosso, H.; Hiromitsu Tanabe, E.; Assumpção Bertuol, D. Leaching of Platinum Group Metals from Spent Automotive Catalysts Using Organic Acids. Miner. Eng. 2020, 159, 106634. [Google Scholar] [CrossRef]
- Agarwal, V.; Safarzadeh, M.S.; Bendler, J.T. Solvent Extraction of Eu(III) from Hydrochloric Acid Solutions Using PC88A and Cyanex 572 in Kerosene. Hydrometallurgy 2018, 177, 152–160. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Zou, D.; Yan, Y.; Li, D. A Novel Synergistic Extraction System for the Recovery of Scandium (III) from Sulfuric Acid Medium with Mixed Cyanex923 and N1923. Sep. Purif. Technol. 2022, 283, 120223. [Google Scholar] [CrossRef]
- Guimarães, A.S.; Mansur, M.B. Removal of Mg and Ca from Ni-Rich Sulphate Solutions by Solvent Extraction Using Cationic and Neutral Extractants. Miner. Eng. 2022, 185, 107684. [Google Scholar] [CrossRef]
- Souza, A.G.O.; Aliprandini, P.; Espinosa, D.C.R.; Tenório, J.A.S. Scandium Extraction from Nickel Processing Waste Using Cyanex 923 in Sulfuric Medium. Jom 2019, 71, 2003–2009. [Google Scholar] [CrossRef]
- Abreu, R.D.; Morais, C.A. Study on Separation of Heavy Rare Earth Elements by Solvent Extraction with Organophosphorus Acids and Amine Reagents. Miner. Eng. 2014, 61, 82–87. [Google Scholar] [CrossRef]
- Wang, L.Y.; Lee, M.S. Separation of Zirconium and Hafnium from Nitric Acid Solutions with LIX 63, PC 88A and Their Mixture by Solvent Extraction. Hydrometallurgy 2014, 150, 153–160. [Google Scholar] [CrossRef]
- Dhawan, N.; Tanvar, H. A Critical Review of End-of-Life Fluorescent Lamps Recycling for Recovery of Rare Earth Values. Sustain. Mater. Technol. 2022, 32, e00401. [Google Scholar] [CrossRef]
- Cenci, M.P.; Dal Berto, F.C.; Camargo, P.S.S.; Veit, H.M. Separation and Concentration of Valuable and Critical Materials from Wasted LEDs by Physical Processes. Waste Manag. 2021, 120, 136–145. [Google Scholar] [CrossRef]
- Demol, J.; Ho, E.; Soldenhoff, K.; Senanayake, G. The Sulfuric Acid Bake and Leach Route for Processing of Rare Earth Ores and Concentrates: A Review. Hydrometallurgy 2019, 188, 123–139. [Google Scholar] [CrossRef]
- Cen, P.; Bian, X.; Liu, Z.; Gu, M.; Wu, W.; Li, B. Extraction of Rare Earths from Bastnaesite Concentrates: A Critical Review and Perspective for the Future. Miner. Eng. 2021, 171, 107081. [Google Scholar] [CrossRef]
- Kapustka, K.; Ziegmann, G.; Klimecka-Tatar, D.; Nakonczy, S. Process Management and Technological Challenges in the Aspect of Permanent Magnets Recovery—The Second Life of Neodymium Magnets. Manuf. Technol. 2020, 20, 617–624. [Google Scholar] [CrossRef]
- Rydberg, J.; Cox, M.; Musikas, C.; Choppin, G.R. Solvent Extraction: Principles and Practice, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0824750632. [Google Scholar]
- Huang, C. Rare Earth Coordination Chemistry; Huang, C., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; ISBN 9780470824870. [Google Scholar]
- Patil, A.B.; Tarik, M.; Struis, R.P.W.J.; Ludwig, C. Exploiting End-of-Life Lamps Fluorescent Powder e-Waste as a Secondary Resource for Critical Rare Earth Metals. Resour. Conserv. Recycl. 2021, 164, 105153. [Google Scholar] [CrossRef]
- Perez, I.D.; Anes, I.A.; Botelho Junior, A.B.; Espinosa, D.C.R. Comparative Study of Selective Copper Recovery Techniques from Nickel Laterite Leach Waste towards a Competitive Sustainable Extractive Process. Clean. Eng. Technol. 2020, 1, 100031. [Google Scholar] [CrossRef]
- Aly, M.I.; Masry, B.A.; Gasser, M.S.; Khalifa, N.A.; Daoud, J.A. Extraction of Ce (IV), Yb (III) and Y(III) and Recovery of Some Rare Earth Elements from Egyptian Monazite Using CYANEX 923 in Kerosene. Int. J. Miner. Process. 2016, 153, 71–79. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Y.; Huang, J.; Liu, T.; Liu, H.; Wang, L. Synergistic Solvent Extraction of Vanadium from Leaching Solution of Stone Coal Using D2EHPA and PC88A. Sep. Purif. Technol. 2017, 181, 1–7. [Google Scholar] [CrossRef]
Ref. | Element | Extractant | Experimental Parameters | Extraction Rate |
---|---|---|---|---|
[21] | La | D2EHPA (bis(2-ethylhexyl)phosphoric acid) in NB18C6 (cyclohexane using 2-nitrobenzo-18-crown-6) | pH 3.0, 0.01 mol/L D2EHPA, 25 °C, A/O 1/1 | 100% |
[22] | Cyanex 272 (bis(2,4,4-trimethylpentyl)phosphinic acid) with TOPO (trioctylphospine oxide) in toluene | pH 5.6, 0.0215 mol/L Cyanex 272, 29 °C, A/O 1/1 | not informed | |
[23] | D2EHPA (bis(2-ethylhexyl)phosphoric acid) in n-heptane | pH 4.0, 20% D2EHPA, 25 °C, A/O 1/1 | 100% | |
[18] | Y | D2EHPA (bis(2-ethylhexyl)phosphoric acid) and Cyanex 272 (bis(2,4,4-trimethylpentyl)phosphinic acid) in kerosene | pH 0.02, 20% D2EHPA, 25 °C, A/O 1/1 | 100% * |
[24] | Aliquot 336 (N-Methyl-N,N,N-tri-octylammonium chloride) with thiocyanate or nitrate media in kerosene | pH 3.0, 20% Aliquat336 from thiocyanate and nitrate medium, 25 °C O/A = 1 | 95% | |
[25] | HPOAc (2-(bis((2-ethylhexyl)oxy)phosphoryl)-2-hydroxy- acetic acid) and P507 (2- Ethylhexyl phosphoric acid mono-2-ethylhexylester) in kerosene | pH 5.0, 0.5 mol/L HPOAc, 25 °C O/A = 1 | 60% | |
[26] | D2EHPA (bis(2-ethylhexyl)phosphoric acid) in kerosene | 1 mol/L HNO3, 0.3026 mol/L D2EHPA, 25 °C, A/O 1/1 | 93% | |
[19] | Nd | D2EHPA (bis(2-ethylhexyl)phosphoric acid) evaluating diluents | 1 mol/L NaCl, 1 mol/L D2EHPA in the aliphatic diluent, 20 °C, A/O 1/1 | 29% ** |
[20] | Cyanex 272 (bis(2,4,4-trimethylpentyl)phosphinic acid) in kerosene | pH 3.0, 0.5 mol/L Cyanex 272 in kerosene, 25 °C, A/O 1/1 | 7.4% *** | |
[27] | TOPO (trioctylphosphine oxide) in kerosene | 500 mol/m3; HNO3, 500 mol/m3; TOPO in kerosene, 25 °C, A/O 1/1 | 100% |
pH | Y/La | Y/Nd | La/Nd | Nd/La |
---|---|---|---|---|
1.0 | 2.64 | 0.99 | 0.38 | 2.67 |
2.0 | 1.37 | 0.99 | 0.72 | 1.38 |
3.0 | 1.34 | 0.99 | 0.74 | 1.36 |
4.0 | 1.27 | 1.07 | 0.84 | 1.19 |
5.0 | 1.23 | 1.00 | 0.82 | 1.23 |
pH | Y/La | Y/Nd | La/Nd |
---|---|---|---|
1.0 | 2.15 | 4.02 | 1.87 |
2.0 | 2.04 | 1.85 | 0.91 |
3.0 | 1.00 | 1.01 | 1.00 |
4.0 | 0.99 | 1.10 | 1.11 |
5.0 | 0.99 | 1.01 | 1.02 |
Y (mg/L) | La (mg/L) | Y (%) | La (%) |
---|---|---|---|
500 | 100 | 97 | 34 |
500 | 200 | 96 | 35 |
500 | 300 | 96 | 0 |
500 | 400 | 98 | 0 |
500 | 500 | 98 | 0 |
100 | 500 | 98 | 0 |
200 | 500 | 98 | 0 |
300 | 500 | 96 | 0 |
400 | 500 | 97 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botelho Junior, A.B.; da Silva, N.O.M.; Tenório, J.A.S.; Espinosa, D.C.R. Structure Investigation of La, Y, and Nd Complexes in Solvent Extraction Process with Liquid Phosphine Oxide, Phosphinic Acid, and Amine Extractants. Metals 2023, 13, 1434. https://doi.org/10.3390/met13081434
Botelho Junior AB, da Silva NOM, Tenório JAS, Espinosa DCR. Structure Investigation of La, Y, and Nd Complexes in Solvent Extraction Process with Liquid Phosphine Oxide, Phosphinic Acid, and Amine Extractants. Metals. 2023; 13(8):1434. https://doi.org/10.3390/met13081434
Chicago/Turabian StyleBotelho Junior, Amilton Barbosa, Natália Olim Martins da Silva, Jorge Alberto Soares Tenório, and Denise Crocce Romano Espinosa. 2023. "Structure Investigation of La, Y, and Nd Complexes in Solvent Extraction Process with Liquid Phosphine Oxide, Phosphinic Acid, and Amine Extractants" Metals 13, no. 8: 1434. https://doi.org/10.3390/met13081434
APA StyleBotelho Junior, A. B., da Silva, N. O. M., Tenório, J. A. S., & Espinosa, D. C. R. (2023). Structure Investigation of La, Y, and Nd Complexes in Solvent Extraction Process with Liquid Phosphine Oxide, Phosphinic Acid, and Amine Extractants. Metals, 13(8), 1434. https://doi.org/10.3390/met13081434