Numerical Investigation of Fatigue Crack Propagation Behaviour of 550E High-Performance Steel
Abstract
:1. Introduction
2. Experimental Program
2.1. Specimen Design
2.2. Fatigue Testing
3. Experimental Results and Discussion
3.1. Fatigue Crack Growth Curve
3.2. Fatigue Crack Growth Rate
4. Numerical Investigations
4.1. Finite Element Model
4.2. Verification
4.3. Parametric Analysis
4.3.1. Initial Crack Angle
4.3.2. Crack Depth Ratio
4.3.3. Stress Ratio
4.3.4. Thickness
4.3.5. Corrosion Pitting
5. Conclusions
- The crack growth rate of Q550E is obviously higher than that of Q235 in the late stage of crack growth. The crack propagation life of Q550E is reduced by about 18% when corroded, as compared to intact specimens. The crack growth curve associated with corrosion pitting is divided into three stages, but it has little influence on the crack propagation path.
- A higher crack depth ratio easily leads to a higher K value, which, in turn, affects the structural life. The critical angle in the initial crack propagation process is 52.5°, and K is significantly affected by the initial crack angle once this critical value is exceeded. When the initial crack angle is 0°, the crack tip stress is maximized, and fractures are most likely to occur. Otherwise, the crack initiation angle tends to expand perpendicular to the load direction.
- The stress ratio is directly proportional to the crack length and inversely proportional to the stress intensity factor. The thickness has an obvious impact on the K value in the crack propagation area and significantly affects the crack growth rate.
- The presence of a corrosion pit has little effect on crack propagation in the early stage of the corrosion pit, but the fatigue life of the specimen is obviously different when the crack passes through the corrosion pit. The corrosion pit around the crack propagation surface reaches the yield state first, and the K value around the corrosion pit gradually decreases along the thickness direction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Liu, Z.; Tang, H.; Peng, J. Deflection-based failure probability analysis of low shrinkage-creep concrete structures in presence of non-stationary evolution of shrinkage and creep uncertainties. Constr. Build. Mater. 2023, 376, 131077. [Google Scholar] [CrossRef]
- Jia, Z.; Yang, Y.; He, Z.; Ma, H.; Ji, F. Mechanical test study on corroded marine high performance steel under cyclic loading. Appl. Ocean Res. 2019, 93, 101942. [Google Scholar] [CrossRef]
- Ban, H.; Shi, G. A review of research on high-strength steel structures. Proc. Inst. Civ. Eng.-Struct. Build. 2018, 171, 625–641. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, Y.; Zhao, O. Structural behaviour and design of press-braked S690 high strength steel angle section long columns. Thin-Walled Struct. 2023, 182, 110251. [Google Scholar] [CrossRef]
- Lai, Z.; Huang, Z.; Varma, A.H. Modeling of high-strength composite special moment frames (C-SMFs) for seismic analysis. J. Constr. Steel Res. 2017, 138, 526–537. [Google Scholar] [CrossRef]
- Studer, P.; Taras, A. Influence of strain-hardening on the load-carrying behaviour of bearing type bolted connections. J. Constr. Steel Res. 2022, 191, 107185. [Google Scholar] [CrossRef]
- Pook, L.P. A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 699–723. [Google Scholar] [CrossRef]
- Chen, D.; Qian, H.; Wang, H.; Wu, Y. Scheme exploration and performance analysis of 800-meter superlarge span structure. Adv. Civ. Eng. 2018, 2018, 5159218. [Google Scholar] [CrossRef]
- Kanno, R. Advances in steel materials for innovative and elegant steel structures in Japan—A review. Struct. Eng. Int. 2018, 26, 242–253. [Google Scholar] [CrossRef]
- Alshoaibi, A.M. Computational simulation of 3D fatigue crack growth under mixed-mode loading. Appl. Sci. 2021, 11, 5953. [Google Scholar] [CrossRef]
- Fiedler, M.; Vormwald, M. Correlations between crack initiation and crack propagation lives of notched specimens under constant and variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 2871–2889. [Google Scholar] [CrossRef]
- Zhang, M.; Pang, J.; Meng, L.; Li, S.; Liu, Q.; Jiang, A.; Zhang, Z. Study on high-cycle fatigue fracture mechanism and strength prediction of RuT450. Mater. Sci. Eng. A 2021, 821, 141599. [Google Scholar] [CrossRef]
- Kamal, M.; Rahman, M. Advances in fatigue life modeling: A review. Renew. Sustain. Energy Rev. 2018, 82, 940–949. [Google Scholar] [CrossRef]
- Zong, L.; Shi, G.; Wang, Y. Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld. Mater. Des. 2015, 66, 196–208. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Li, S.; Shi, D.; Qi, H. Modeling fatigue crack growth for a through thickness crack: An out-of-plane constraint-based approach considering thickness effect. Int. J. Mech. Sci. 2020, 178, 105625. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, Z.; Meng, Z.; Xue, L.; Jia, G.; Chen, J. A time-integral crack propagation model considering thickness effect. IEEE Access 2019, 7, 41078–41089. [Google Scholar] [CrossRef]
- Li, B.; Jiang, C.; Noguchi, H.; Liu, L. Revealing the mechanism of critical root radius in notch fatigue limit based on crack closure concept. Int. J. Fatigue 2020, 130, 105261. [Google Scholar] [CrossRef]
- MYaagoubi, E.; Meier, J. Crack growth angle prediction of an internal crack under mixed mode load for unfilled elastomer using the strain energy density factor. Polym. Eng. Sci. 2021, 61, 2183–2192. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Demartino, C.; Zhang, K. Extremely—Low cycle fatigue fracture of Q235 steel at different stress triaxialities. J. Constr. Steel Res. 2020, 169, 106060. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, C.; Wang, W. Experimental and numerical study on cyclic behavior of corroded Q345 steel. J. Constr. Steel Res. 2022, 196, 107369. [Google Scholar] [CrossRef]
- Kang, L.; Hong, S.T. Experimental investigation on fatigue properties of Q690D high strength steel. J. South China Univ. Technol. Nat. Sci. Ed. 2021, 49, 35–43. (In Chinese) [Google Scholar]
- Olugbade, T.O.; Ojo, O.T.; Omiyale, B.O.; Olutomilola, E.O.; Olorunfemi, B.J. A review on the corrosion fatigue strength of surface-modified stainless steels. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 421–430. [Google Scholar] [CrossRef]
- Cheng, A.; Chen, N.-Z. An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels. Eng. Fail. Anal. 2018, 84, 262–275. [Google Scholar] [CrossRef]
- Liao, X.; Wang, Y.; Feng, L.; Ban, H.; Chen, Y. Fatigue crack initiation and energy-based life analysis for Q345qD bridge steel at low temperatures. J. Constr. Steel Res. 2021, 180, 106571. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Hopman, H. Surface crack growth in offshore metallic pipes under cyclic loads: A literature review. J. Mar. Sci. Eng. 2020, 8, 339–361. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y. Study on fatigue behavior of orthotropic steel bridge deck that considers corrosion effects. J. Bridg. Eng. 2023, 28, 04022152. [Google Scholar] [CrossRef]
- Li, Y.; You, Y.; Lv, X. Comparative study on the crack growth behaviours of E690 steel and heat-affected zone microstructures under cathodic potential in artificial seawater based on mechano-electrochemical effect at crack tip. Corros. Sci. 2022, 198, 110103. [Google Scholar] [CrossRef]
- Jiang, C.; Xiong, W.; Cai, C.; Zhou, L.; Zhu, Y. Fatigue assessment of fillet weld in steel bridge towers considering corrosion effects. Eng. Fail. Anal. 2023, 143, 106901. [Google Scholar] [CrossRef]
- Wei, W.; Du, L.; Yang, G.; Zhang, Y.; Sun, Y.; Yang, X. Fatigue reliability evaluation of Q460 welded joints using fracture fatigue entropy method. Eng. Fract. Mech. 2021, 247, 107641. [Google Scholar] [CrossRef]
- Rusk, D.; Hoppe, W.; Braisted, W.; Powar, N. Fatigue life prediction of corrosion-damaged high-strength steel using an equivalent stress riser (ESR) model. Part II: Model development and results. Int. J. Fatigue 2009, 31, 1464–1475. [Google Scholar] [CrossRef]
- Chen, J.; Diao, B.; He, J.; Pang, S.; Guan, X. Equivalent surface defect model for fatigue life prediction of steel reinforcing bars with pitting corrosion. Int. J. Fatigue 2018, 110, 153–161. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, A.; Fu, G.; Li, C.-Q.; Robert, D.; Mahmoodian, M. Evaluation of stress intensity factor for cast iron pipes with sharp corrosion pits. Eng. Fail. Anal. 2017, 81, 254–269. [Google Scholar] [CrossRef]
Material | C | SI | Mna | Nbb | Vb | Tib | Als | Cr | Ni | Cu | Mo | S | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q550E | 0.12 | 0.55 | 1.255 | 0.024 | 0.05 | 0.016 | 0.03 | 0.5 | 0.5 | 0.4 | 0.3 | - | - |
Q235 | 0.17 | 0.35 | 1.4 | - | - | - | - | - | - | - | - | 0.045 | 0.045 |
Material | Yield Strength (MPa) Rp (0.2) | Ultimate Strength (MPa) Rm | Modulus of Elasticity (GPa) E |
---|---|---|---|
Q550E | 665.71 | 720.43 | 216.79 |
Q235 | 293.91 | 435.64 | 213.22 |
Materials | No | m | Mean Value | ||
---|---|---|---|---|---|
Q550E | 1# | −9.08 | 3.61 | 0.98 | = −9.11, m = 3.6 |
2# | −9.16 | 3.6 | 0.98 | ||
3# | −9.09 | 3.58 | 0.99 | ||
Q235 | 1# | −10.47 | 4.59 | 0.98 | = −10.45, m = 4.57 |
2# | −10.45 | 4.57 | 0.98 | ||
3# | −10.43 | 4.57 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, L.; Lin, H.; Wang, Y.; Yang, Y.; Chen, H. Numerical Investigation of Fatigue Crack Propagation Behaviour of 550E High-Performance Steel. Metals 2023, 13, 1496. https://doi.org/10.3390/met13081496
Xiao L, Lin H, Wang Y, Yang Y, Chen H. Numerical Investigation of Fatigue Crack Propagation Behaviour of 550E High-Performance Steel. Metals. 2023; 13(8):1496. https://doi.org/10.3390/met13081496
Chicago/Turabian StyleXiao, Linfa, Heng Lin, Yongxiang Wang, Yiming Yang, and Huapeng Chen. 2023. "Numerical Investigation of Fatigue Crack Propagation Behaviour of 550E High-Performance Steel" Metals 13, no. 8: 1496. https://doi.org/10.3390/met13081496
APA StyleXiao, L., Lin, H., Wang, Y., Yang, Y., & Chen, H. (2023). Numerical Investigation of Fatigue Crack Propagation Behaviour of 550E High-Performance Steel. Metals, 13(8), 1496. https://doi.org/10.3390/met13081496