Extending Density Phase-Field Simulations to Dynamic Regimes
Abstract
:1. Introduction
1.1. Overview of Density Phase-Field Theory
1.2. Issues with the Density Phase-Field Method
1.2.1. Theoretical Issues
1.2.2. Computational Challenges
- What are the thermodynamic criteria that density phase field free energy functionals should meet?
- How can the DPF methods be made dynamic?
- How can the performance constraints associated with solving a fourth-order PDE be overcome?
2. Theory
2.1. General Criteria for Density Free Energy Functionals
2.2. Linking Order Parameters with Density
3. Methods
3.1. Equilibrium Grain Boundary Properties
3.2. Dynamic Properties of Planar Grain Boundaries
3.3. The Shrinking Circular Grain Problem
3.4. Free Energy Functional Parameterization
4. Results
4.1. Equilibrium Results
4.2. Dynamic Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Density Polynomial Derivation
- Criteria 1:from criteria 4:
- Criteria 2: guaranteed by
- Criteria 3:
- Criteria 4:
- Criteria 5: guaranteed by
References
- Gottstein, G.; Shvindlerman, L.S. Grain Boundary Migration in Metals, 2nd ed.; CRC Series in Materials Science and Technology; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Provatas, N.; Elder, K. Phase-Field Methods in Materials Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Steinbach, I. Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 2009, 17, 073001. [Google Scholar] [CrossRef]
- Chen, L.Q. Phase-Field Models for Microstructure Evolution. Annu. Rev. Mater. Res. 2002, 32, 113–140. [Google Scholar] [CrossRef]
- Darvishi Kamachali, R. Grain Boundary Motion in Polycrystalline Materials. Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, 2012. [Google Scholar]
- Kamachali, R.D.; Steinbach, I. 3-D phase-field simulation of grain growth: Topological analysis versus mean-field approximations. Acta Mater. 2012, 60, 2719–2728. [Google Scholar] [CrossRef]
- Kamachali, R.D.; Abbondandolo, A.; Siburg, K.; Steinbach, I. Geometrical grounds of mean field solutions for normal grain growth. Acta Mater. 2015, 90, 252–258. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, D.I.; Kim, W.T.; Park, Y.B. Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys. Rev. E 2006, 74, 061605. [Google Scholar] [CrossRef] [PubMed]
- Krill III, C.; Chen, L.Q. Computer simulation of 3-D grain growth using a phase-field model. Acta Mater. 2002, 50, 3059–3075. [Google Scholar] [CrossRef]
- Miyoshi, E.; Takaki, T.; Ohno, M.; Shibuta, Y.; Sakane, S.; Shimokawabe, T.; Aoki, T. Ultra-large-scale phase-field simulation study of ideal grain growth. npj Comput. Mater. 2017, 3, 25. [Google Scholar] [CrossRef]
- Steinbach, I.; Shchyglo, O. Phase-field modelling of microstructure evolution in solids: Perspectives and challenges. Curr. Opin. Solid State Mater. Sci. 2011, 15, 87–92. [Google Scholar] [CrossRef]
- Chen, L.Q.; Wang, Y. The continuum field approach to modeling microstructural evolution. JOM 1996, 48, 13–18. [Google Scholar] [CrossRef]
- Darvishi Kamachali, R. A model for grain boundary thermodynamics. RSC Adv. 2020, 10, 26728–26741. [Google Scholar] [CrossRef]
- Darvishi Kamachali, R.; Kwiatkowski da Silva, A.; McEniry, E.; Ponge, D.; Gault, B.; Neugebauer, J.; Raabe, D. Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries. npj Comput. Mater. 2020, 6, 191. [Google Scholar] [CrossRef]
- Zhou, X.; Darvishi Kamachali, R.; Boyce, B.L.; Clark, B.G.; Raabe, D.; Thompson, G.B. Spinodal Decomposition in Nanocrystalline Alloys. Acta Mater. 2021, 215, 117054. [Google Scholar] [CrossRef]
- Li, L.; Darvishi Kamachali, R.; Li, Z.; Zhang, Z. Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy. Phys. Rev. Mater. 2020, 4, 053603. [Google Scholar] [CrossRef]
- Wang, L.; Darvishi Kamachali, R. Incorporating elasticity into CALPHAD-informed density-based grain boundary phase diagrams reveals segregation transition in Al-Cu and Al-Cu-Mg alloys. Comput. Mater. Sci. 2021, 199, 110717. [Google Scholar] [CrossRef]
- Wallis, T.; Kamachali, R.D. Grain boundary structural variations amplify segregation transition and stabilize co-existing spinodal interfacial phases. Acta Mater. 2023, 242, 118446. [Google Scholar] [CrossRef]
- Wang, L.; Darvishi Kamachali, R. Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems. Acta Mater. 2021, 207, 116668. [Google Scholar] [CrossRef]
- Wang, L.; Darvishi Kamachali, R. CALPHAD integrated grain boundary co-segregation design: Towards safe high-entropy alloys. J. Alloys Compd. 2023, 933, 167717. [Google Scholar] [CrossRef]
- Jacobson, D.; Darvishi Kamachali, R.; Thompson, G.B. Molecular Phase Field: Coupling Density Phase Field Model with Atomistic Potentials. Under Consideration for Publication in Computational Materials Science.
- Uberuaga, B.P.; Vernon, L.J.; Martinez, E.; Voter, A.F. The relationship between grain boundary structure, defect mobility, and grain boundary sink efficiency. Sci. Rep. 2015, 5, 9095. [Google Scholar] [CrossRef]
- Philippe, T. Corners in phase-field theory. Phys. Rev. E 2021, 103, 032801. [Google Scholar] [CrossRef]
- Tschopp, M.A.; McDowell, D.L. Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminium. Philos. Mag. 2007, 87, 3147–3173. [Google Scholar] [CrossRef]
- Janssens, M.; Brett, J.M. Cultural intelligence in global teams: A fusion model of collaboration. Group Organ. Manag. 2006, 31, 124–153. [Google Scholar] [CrossRef]
- Trautt, Z.T.; Upmanyu, M.; Karma, A. Interface mobility from interface random walk. Science 2006, 314, 632–635. [Google Scholar] [CrossRef]
- Foiles, S.M.; Hoyt, J.J. Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 2006, 54, 3351–3357. [Google Scholar] [CrossRef]
- Homer, E.R.; Holm, E.A.; Foiles, S.M.; Olmsted, D.L. Trends in grain boundary mobility: Survey of motion mechanisms. JOM 2014, 66, 114–120. [Google Scholar] [CrossRef]
- Olmsted, D.L.; Foiles, S.M.; Holm, E.A. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 2009, 57, 3694–3703. [Google Scholar] [CrossRef]
- Olmsted, D.L.; Holm, E.A.; Foiles, S.M. Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility. Acta Mater. 2009, 57, 3704–3713. [Google Scholar] [CrossRef]
Symbol | Value | Description | Units |
---|---|---|---|
The cohesive energy | |||
The equilibrium molar volume | |||
n | 4 | Free energy parameter | none |
a | −4 | Free energy parameter | none |
Gradient Energy coefficient | |||
order parameter mobility | |||
0.9 | minimum grain boundary density | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobson, D.; Kamachali, R.D.; Thompson, G.B. Extending Density Phase-Field Simulations to Dynamic Regimes. Metals 2023, 13, 1497. https://doi.org/10.3390/met13081497
Jacobson D, Kamachali RD, Thompson GB. Extending Density Phase-Field Simulations to Dynamic Regimes. Metals. 2023; 13(8):1497. https://doi.org/10.3390/met13081497
Chicago/Turabian StyleJacobson, David, Reza Darvishi Kamachali, and Gregory Bruce Thompson. 2023. "Extending Density Phase-Field Simulations to Dynamic Regimes" Metals 13, no. 8: 1497. https://doi.org/10.3390/met13081497
APA StyleJacobson, D., Kamachali, R. D., & Thompson, G. B. (2023). Extending Density Phase-Field Simulations to Dynamic Regimes. Metals, 13(8), 1497. https://doi.org/10.3390/met13081497