The Cyclic Stability of the Superelasticity in Quenched and Aged Ni44Fe19Ga27Co10 Single Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. First Stage of Initial Degradation
4.2. Second Stage of High Cyclic Stability
4.3. Third Stage of Cyclic Fatigue and Changes in the Microstructure after Cycling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.; Sehitoglu, H.; Efstathiou, C.; Maier, H. Inter-martensitic transitions in Ni–Fe–Ga single crystals. Acta Mater. 2007, 55, 4867. [Google Scholar] [CrossRef]
- Masdeu, F.; Pons, J.; Torrens-Serra, J.; Chumlyakov, Y.; Cesari, E. Superelastic behavior and elastocaloric effect in a Ni51.5Fe21.5Ga27.0 ferromagnetic shape memory single crystal under compression. Mater. Sci. Eng. A 2022, 833, 142362. [Google Scholar] [CrossRef]
- Masdeu, F.; Pons, J.; Chumlyakov, Y.; Cesari, E. Two-way shape memory effect in Ni49Fe18Ga27Co6 ferromagnetic shape memory single crystals. Mater. Sci. Eng. A 2021, 805, 140543. [Google Scholar] [CrossRef]
- Efstathiou, C.; Sehitoglu, H.; Kurath, P.; Foletti, S.; Davoli, P. Fatigue response of NiFeGa single crystals. Scr. Mater. 2007, 57, 409–412. [Google Scholar] [CrossRef]
- Imran, M.; Zhang, X. Recent developments on the cyclic stability in elastocaloric materials. Mater. Des. 2020, 195, 109030. [Google Scholar] [CrossRef]
- Larchenkova, N.; Panchenko, E.; Timofeeva, E.; Tagiltsev, A.; Chumlyakov, Y. Cyclic stability of superelasticity in [001]-oriented stress-free and stress-assisted aged Ni49Fe18Ga27Co6 single crystals. AIP Conf. Proc. 2008, 2051, 020166. [Google Scholar]
- Chen, H.; Wang, Y.; Nie, Z.; Li, R.; Cong, D.; Liu, W.; Ye, F.; Liu, Y.; Cao, P.; Tian, F.; et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals. Nat. Mater. 2020, 19, 712–718. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhai, Z.; Nie, Z.; Harjo, S.; Cong, D.; Wang, M.; Lie, J.; Wang, Y. An in situ neutron diffraction study of anomalous superelasticity in a strain glass Ni43Fe18Ga27Co12 alloy. J. Appl. Crystallogr. 2015, 48, 1183. [Google Scholar] [CrossRef]
- Sun, X.; Cong, D.; Ren, Y.; Liss, K.-D.; Brown, D.E.; Ma, Z.; Hao, S.; Xia, W.; Chen, Z.; Ma, L.; et al. Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy. Acta Mater. 2020, 183, 11–23. [Google Scholar] [CrossRef]
- Hao, C.; Wang, Y.; Wu, X.; Guo, Y.; Liu, C.; He, L.; Adil, M.; Yang, S.; Song, X. High performance damping behavior of Ni-Fe-Ga alloys within the martensite/strain-glass phase boundary. J. Alloys Compd. 2022, 898, 162954. [Google Scholar] [CrossRef]
- Timofeeva, E.; Panchenko, E.; Eftifeeva, A.; Tagiltsev, A.; Surikov, N.; Tokhmetova, A.; Yanushonite, E.; Zherdeva, M.; Karaman, I.; Chumlyakov, Y. Cyclic stability of superelasticity in [001]-oriented quenched Ni44Fe19Ga27Co10 and Ni39Fe19Ga27Co15 single crystals. Acta Metall. Sin. 2023, 36, 650–660. [Google Scholar] [CrossRef]
- Timofeeva, E.; Panchenko, E.; Zherdeva, M.; Tokhmetova, A.; Surikov, N.; Chumlyakov, Y.; Karaman, I. The effect of thermal treatment on microstructure and thermal-induced martensitic transformations in Ni44Fe19Ga27Co10 single crystals. Metals 2022, 12, 1960. [Google Scholar] [CrossRef]
- Timofeeva, E.E.; Panchenko, E.Y.; Zherdeva, M.V.; Chumlyakov, Y.I.; Karaman, I. Thermal- and stress-induced martensitic transformations in [001]-oriented Ni44Fe19Ga27Co10 single crystals. Mater. Lett. 2022, 310, 131477. [Google Scholar] [CrossRef]
- Hornbogen, E. Review Thermo-mechanical fatigue of shape memory alloys. J. Mater. Sci. 2004, 39, 385–399. [Google Scholar] [CrossRef]
- Dutta, P.S. Bulk growth of crystals of III–V compound semiconductors. Semicond. Sci. Technol. 2011, 3, 36–80. [Google Scholar]
- Venkataraman, R. Semiconductor detectors. In Handbook of Radioactivity Analysis, 4th ed.; L’Annunziata, M.F., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 1, pp. 409–491. [Google Scholar]
- Ding, X.D.; Suzuki, T.; Suna, J.; Ren, X.; Otsuka, K. Study on elastic constant softening in stress-induced martensitic transformation by molecular dynamics simulation. Mater. Sci. Eng. A 2006, 438–440, 113–117. [Google Scholar] [CrossRef]
- Lauhoff, C.; Reul, A.; Langenkämper, D.; Krooß, P.; Somsen, C.; Gutmann, M.; Pedersen, B.; Kireeva, I.; Chumlyakov, Y.; Eggeler, G.; et al. Effects of aging on the stress-induced martensitic transformation and cyclic superelastic properties in Co-Ni-Ga shape memory alloy single crystals under compression. Acta Mater. 2022, 226, 117623. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Guo, W.; Guan, Y.; Wang, Z.; Zeng, Q.; Wang, X. Improved superelastic stability of NiTi shape memory alloys through surface nano-crystallization followed by low temperature aging treatment. Intermetallics 2021, 131, 107114. [Google Scholar] [CrossRef]
- Gall, K.; Maier, H. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002, 50, 4643–4657. [Google Scholar] [CrossRef]
- Krooß, P.; Kadletz, P.; Somsen, C.; Gutmann, M.; Chumlyakov, Y.; Schmahl, W.; Maier, H.; Niendorf, T. Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy: On the roles of dislocation activity and chemical order. Shape Mem. Superelast. 2016, 2, 37–49. [Google Scholar] [CrossRef]
- Kann, Q.; Yu, C.; Kang, G.; Li, J.; Yan, W. Experimental observations on rate-dependent cyclic deformation of superelastic NiTi shape memory alloy. Mech. Mater. 2016, 97, 48–58. [Google Scholar] [CrossRef]
- Beke, D.; Daróczi, L.; Samy, N.; Tóth, L.; Bolgár, M. On the thermodynamic analysis of martensite stabilization treatments. Acta Mater. 2020, 200, 490–501. [Google Scholar] [CrossRef]
- Rao, W.; Xu, Y.; Hu, C.; Khachaturyan, A. Magnetoelastic equilibrium and super-magnetostriction in highly defected pre-transitional materials. Acta Mater. 2020, 188, 539–550. [Google Scholar] [CrossRef]
- Sehitoglu, H.; Wang, J.; Maier, H. Transformation and slip behavior of Ni2FeGa. Int. J. Plast. 2012, 39, 61–74. [Google Scholar] [CrossRef]
- Chowdhury, P.; Sehitoglu, H. A revisit to atomistic rationale for slip in shape memory alloys. Prog. Mater. Sci. 2017, 85, 1–42. [Google Scholar] [CrossRef]
- Koizumi, Y.; Minamino, Y.; Nakano, T.; Umakoshi, Y. Effects of antiphase domains on dislocation motion in Ti3Al single crystals deformed by prism slip. Philos. Mag. 2008, 88, 465–468. [Google Scholar] [CrossRef]
- Rong, T.; Aindow, M.; Jones, I. The interaction between extended dislocations and antiphase domain boundaries—I: Superpartial separation and the yield stress. Intermetallics 2001, 9, 499–506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, E.; Panchenko, E.; Zherdeva, M.; Tokhmetova, A.; Chumlyakov, Y.I. The Cyclic Stability of the Superelasticity in Quenched and Aged Ni44Fe19Ga27Co10 Single Crystals. Metals 2023, 13, 1538. https://doi.org/10.3390/met13091538
Timofeeva E, Panchenko E, Zherdeva M, Tokhmetova A, Chumlyakov YI. The Cyclic Stability of the Superelasticity in Quenched and Aged Ni44Fe19Ga27Co10 Single Crystals. Metals. 2023; 13(9):1538. https://doi.org/10.3390/met13091538
Chicago/Turabian StyleTimofeeva, Ekaterina, Elena Panchenko, Maria Zherdeva, Aida Tokhmetova, and Yuriy I. Chumlyakov. 2023. "The Cyclic Stability of the Superelasticity in Quenched and Aged Ni44Fe19Ga27Co10 Single Crystals" Metals 13, no. 9: 1538. https://doi.org/10.3390/met13091538
APA StyleTimofeeva, E., Panchenko, E., Zherdeva, M., Tokhmetova, A., & Chumlyakov, Y. I. (2023). The Cyclic Stability of the Superelasticity in Quenched and Aged Ni44Fe19Ga27Co10 Single Crystals. Metals, 13(9), 1538. https://doi.org/10.3390/met13091538