Production and Characterization of Aluminum Reinforced with SiC Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Investigation of Conditions of Dispersion and Mixture Technique
3.2. Effect of the Volume Fraction of the SiC Nanoparticles
3.3. Characterization of Al Nanocomposites Reinforced with 1.0 vol. % of SiC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singla, D.; Amulya, K.; Murtaza, Q. CNT reinforced aluminium matrix composite-a review. Mater. Today Proc. 2015, 2, 2886–2895. [Google Scholar] [CrossRef]
- Reddy, M.P.; Manakari, V.; Parande, G.; Ub aid, F.; Shakoor, R.; Mohamed, A.; Grupta, M. Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles. J. Alloys Compds. 2018, 762, 398–408. [Google Scholar] [CrossRef]
- Reddy, M.P.; Manakari, V.; Parande, G.; Shakoor, R.; Mohamed, A.; Grupta, M. Structural, mechanical and thermal characteristics of Al-Cu-Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion. Compos. B Eng. 2019, 164, 485–492. [Google Scholar] [CrossRef]
- Podymova, N.B.; Kalashnikov, I.E.; Bolotova, L.K.; Kobeleva, L.I. Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites. Ultrasonics 2019, 99, 105959. [Google Scholar] [CrossRef] [PubMed]
- Podymova, N.B.; Kalashnikov, I.E.; Bolotova, L.K.; Kobeleva, L.I. Effect of porosity on the statistical amplitude distribution of backscattered ultrasonic pulses in particulate reinforced metal-matrix composites. Ultrasonics 2020, 108, 106135. [Google Scholar] [CrossRef]
- Kutzhanov, M.K.; Matveev, A.T.; Kvashnin, D.G.; Corthay, S.; Kvashnin, A.G.; Konopatsky, A.S.; Bondarev, A.V.; Arkharova, N.A.; Shtansky, D.V. Al/SiC nanocomposites with enhanced thermomechanical properties obtained from microwave plasma-treated nanopowders. Mater. Sci. Eng. A 2021, 824, 141817. [Google Scholar] [CrossRef]
- Adib, M.H.; Abedinzadeh, R. Study of mechanical properties and wear behavior of hybrid Al/(Al2O3+SiC) nanocomposites fabricated by powder technology. Mater. Chem. Phys. 2023, 305, 127922. [Google Scholar] [CrossRef]
- Kamrani, S.; Razavi Hesabi, Z.; Riedel, R.; Seyed Reihani, S.M. Synthesis and Characterization of Al–SiC Nanocomposites Produced by Mechanical Milling and Sintering. Adv. Comp. Mater. 2011, 20, 13–27. [Google Scholar] [CrossRef]
- Hassanein, W.S.; Sadoun, A.M.; Abu-Oqail, A. Effect of SiC addition on the mechanical properties and wear behavior of Al-SiC nanocomposites produced by accumulative roll bonding. Mater. Res. Express 2020, 7, 075006. [Google Scholar] [CrossRef]
- Purohit, R.; Kumar, A.; Qureshi, M.M.U.; Rana, R.S.; Kushwaha, S. Development of Al-Al2O3 nanocomposites by stir casting followed by hot forging and heat treatment and testing of their properties. Mater. Today Proc. 2023, 76, 459–466. [Google Scholar] [CrossRef]
- Hu, Z.; Pozuelo, M.; Sokoluk, M.; Mathaudhu, S.; Roach, C.; Li, X.; Yang, J.-M. Micro-mechanical properties of homogeneous- and inhomogeneous-structured pillars in Al–TiC nanocomposite: An in-situ study. Mater. Sci. Eng. A 2019, 762, 138084. [Google Scholar] [CrossRef]
- Jargalsaikhan, B.; Bor, A.; Lee, J.; Choi, H. Al/CNT nanocomposite fabrication on the different property of raw material using a planetary ball mill. Adv. Powder Technol. 2020, 31, 1957–1962. [Google Scholar] [CrossRef]
- Yu, T.; Liu, J.; He, Y.; Tian, J.; Chen, M.; Wang, Y. Microstructure and wear characterization of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites manufactured using selective laser melting. Wear 2021, 476, 203581. [Google Scholar] [CrossRef]
- Bharathi, P.; Sampath Kumar, T. Mechanical Characteristics and Wear Behaviour of Al/SiC and Al/SiC/B4C Hybrid Metal Matrix Composites Fabricated Through Powder Metallurgy Route. Silicon 2023, 15, 4259–4275. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, W.; Xu, B.; Shu, G.; Li, Q. Microstructure and Mechanical Properties of Al–SiC Nanocomposites Synthesized by Surface-Modified Aluminium Powder. Metals 2018, 8, 253. [Google Scholar] [CrossRef]
- Naher, S.; Brabazon, D.; Looney, L. Development and assessment of a new quick quench stir caster design for the production of metal matrix composites. J. Mater. Process. Technol. 2004, 166, 430–439. [Google Scholar] [CrossRef]
- Shahrdami, L.; Sedghi, A.; Shaeri, M.H. Microstructure and mechanical properties of Al matrix nanocomposites reinforced by different amounts of CNT and SiCW. Compos. B Eng. 2019, 175, 107081. [Google Scholar] [CrossRef]
- Soltani, M.; Atrian, A. High temperature tensile behavior and microstructure of Al-SiC nanocomposite fabricated by mechanical milling and hot extrusion technique. Mat. Res. Express 2018, 5, 025026. [Google Scholar] [CrossRef]
- Mei, X.M.; Mei, Q.S.; Li, C.L.; Wan, L.; Chen, F.; Chen, Z.H.; Ma, Y.; Xu, T.; Li, J.Y. Enhanced strengthening of Al–SiC nanocomposites containing a uniform dispersion of dense nanoparticles fabricated by a hybrid accumulative roll-bonding process. Mater. Sci. Eng. A 2021, 799, 140217. [Google Scholar] [CrossRef]
- Simões, S.; Viana, F.; Reis, M.A.L.; Vieira, M.F. Improved dispersion of carbon nanotubes in aluminum nanocomposites. Compos. Struct. 2014, 108, 992–1000. [Google Scholar] [CrossRef]
- Carneiro, Í.; Fernandes, J.V.; Simões, S. Strengthening Mechanisms of Aluminum Matrix Nanocomposites Reinforced with CNTs Produced by Powder Metallurgy. Metals 2021, 11, 1711. [Google Scholar] [CrossRef]
- Beausir, B.; Fundenberger, J.-J. Analysis Tools for Electron and X-ray Diffraction, ATEX-Software; Université de Lorraine-Metz. 2017. Available online: www.atex-software.eu (accessed on 28 August 2023).
- Chen, Y.; Ye, R.; Liu, J. Understanding of dispersion and aggregation of suspensions of zein nanoparticles in aqueous alcohol solutions after thermal treatment. Ind. Crops Prod. 2013, 50, 764–770. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, P.; Li, B. Study of Nanoscale Wear of SiC/Al Nanocomposites Using Molecular Dynamics Simulations. Tribol. Lett. 2021, 69, 38. [Google Scholar] [CrossRef]
- Shaikh, M.B.N.; Aziz, T.; Arif, S.; Ansari, A.H.; Karagiannidis, P.G.; Uddin, M. Effect of sintering techniques on microstructural, mechanical and tribological properties of Al-SiC composites. Surf. Interfaces 2020, 20, 100598. [Google Scholar] [CrossRef]
- Ryu, H.J.; Cha, S.I.; Hong, S.H. Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J. Mat. Res. 2003, 12, 2851–2858. [Google Scholar] [CrossRef]
- Amirkhanlou, S.; Rahimian, M.; Ketabchi, M.; Parvin, N.; Yaghinali, P.; Carreno, F. Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding. Met. Mater. Trans. A 2016, 47, 5136–5145. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Torknik, F.S.; Manafi, S.A. Enhanced compressive strength of nanostructured aluminum reinforced with sic nanoparticles and investigation of strengthening mechanisms and fracture behavior. J. Mater. Eng. Perform. 2017, 26, 4902–4909. [Google Scholar] [CrossRef]
- Malaki, M.; Xu, W.; Kasar, A.K.; Menezes, P.L.; Dieringa, H.; Varma, R.S.; Gupta, M. Advanced metal matrix nanocomposites. Metals 2019, 9, 330. [Google Scholar] [CrossRef]
- Carneiro, I.; Simões, S. Strengthening Mechanisms in Carbon Nanotubes Reinforced Metal Matrix Composites: A Review. Metals 2021, 11, 1613. [Google Scholar] [CrossRef]
Si | C | Al | Fe | |
---|---|---|---|---|
SiC nanoparticles | 35.3 | 64.7 | 0.0 | 0.0 |
Al powders | 0.0 | 0.0 | 96.3 | 3.7 |
Zone | Al | Fe | Si | C |
---|---|---|---|---|
Z1 | 100 | 0.0 | 0.0 | 0.0 |
Z2 | 64.8 | 35.2 | 0.0 | 0.0 |
Z3 | 54.3 | 0.0 | 26.2 | 19.5 |
Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | |
---|---|---|---|
Al matrix | 64 | 40 | 23 |
Al 1.0 vol. % SiC | 86 | 36 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, F.; Simões, S. Production and Characterization of Aluminum Reinforced with SiC Nanoparticles. Metals 2023, 13, 1626. https://doi.org/10.3390/met13091626
Rocha F, Simões S. Production and Characterization of Aluminum Reinforced with SiC Nanoparticles. Metals. 2023; 13(9):1626. https://doi.org/10.3390/met13091626
Chicago/Turabian StyleRocha, Francisca, and Sónia Simões. 2023. "Production and Characterization of Aluminum Reinforced with SiC Nanoparticles" Metals 13, no. 9: 1626. https://doi.org/10.3390/met13091626
APA StyleRocha, F., & Simões, S. (2023). Production and Characterization of Aluminum Reinforced with SiC Nanoparticles. Metals, 13(9), 1626. https://doi.org/10.3390/met13091626