Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace
Abstract
:1. Introduction
2. Sampling and Testing of Slag Crust from Copper Stave
2.1. Chemical Composition Analysis of Slag Crust
2.2. Thermal Conductivity of the Slag Crust
2.3. Melting Performance of the Slag Crust
3. Simulation of Thickness of the Slag Crust on Copper Stave
3.1. Model Assumptions
3.2. Boundary Conditions and Parameters
3.3. Simulation and Validation of the Slag Crust Thickness
4. Appropriate Thickness of the Slag Crust on Blast Furnace Stave
4.1. Relationship between Slag Crust Thickness and Blast Furnace Indices
4.2. Dependence of Slag Crust Thickness on the Stave Cooling Water Pipe Damage
5. Conclusions
- Slag crust samples were extracted from the hot surface of the copper stave in the high-temperature area, taking advantage of the blast furnace stockline’s maintenance opportunity. The slag crust’s chemical composition, thermal conductivity, and melting capability were examined. The slag crust has a thermal conductivity of 1.45–1.55 W (m K)−1. Its flow temperature (FT), hemispherical temperature (MT), and softening temperature (ST) are 1468.1 °C, 1434.5 °C, and 1439.9 °C, respectively.
- A mathematical model for the heat transfer of the copper stave was constructed using the copper stave in the high-temperature area of the blast furnace as the research object. The model was confirmed using real data gathered from the dropping of the stockline, and the temperature measurement points of the stave corresponding to various slag crust thicknesses during typical blast furnace production were computed. The outcomes of the computation and the measurement agreed fairly well.
- By examining the blast furnace output data from 2020 to 2022 and calculating the average thickness of the slag crust, it was discovered that the better the indices, the smaller the slag, but the greater the chance of cooling water pipe damage. The appropriate average slag thickness should be between 150 and 200 mm, taking into consideration both the long campaign and the technical indices of the blast furnace.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Dai, J.; Li, C.Z.; Yu, X.B.; Xue, Z.L.; Saxén, H. A review on explorations of the oxygen blast furnace process. Steel Res. Int. 2021, 92, 2000326. [Google Scholar] [CrossRef]
- Li, J.Q.; Li, C.Z.; Zhang, W.; Zhang, J.H.; Xue, Z.L. Material, energy and exergy flows of the oxygen blast furnace process with sintering flue gas injection. J. Clean. Prod. 2022, 371, 133294. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, K.X.; Zhang, J.L.; Chen, Y.B. A new method for evaluating cooling capacity of blast furnace cooling stave. Ironmak. Steelmak. 2019, 46, 671–681. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, R.; Zhang, J.L.; Jiao, K.X. Manufacturing technology and application of cooling stave in blast furnace. Metall. Res. Technol. 2020, 117, 504. [Google Scholar] [CrossRef]
- Fan, X.Y.; Jiao, K.X.; Zhang, J.L.; Wu, S.R.; E, D.Y.; Yan, B.G. Characterization and Properties of Scaffold in a Dissected Blast Furnace Hearth. ISIJ Int. 2019, 59, 2205–2211. [Google Scholar]
- Zhang, W.; Li, K.; Dong, J.H.; Li, C.Z.; Liu, A.H.; Zhang, J.H.; Xue, Z.L. Kinetic triplet from low-temperature carburization and carbon deposition reactions. J. Iron Steel Res. Int. 2022, 29, 1545–1558. [Google Scholar] [CrossRef]
- Li, F.G.; Zhang, J.L. Research on the Influence of Furnace Structure on Copper Cooling Stave Life. High Temp. Mater. 2019, 38, 1–7. [Google Scholar] [CrossRef]
- Ni, A.; Li, C.Z.; Zhang, W.; Xiao, Z.X.; Liu, D.L.; Xue, Z.L. Investigation of the hearth erosion of WISCO No. 1 blast furnace based on the numerical analysis of iron flow and heat transfer in the hearth. Metals 2022, 12, 843. [Google Scholar] [CrossRef]
- Zuo, H.B.; Wang, Y.J.; Wang, X.B. Damage Mechanism of Copper Staves in a 3200 m3 Blast Furnace. Metals 2018, 8, 943. [Google Scholar] [CrossRef]
- Wu, T.; Cheng, S. Model of Forming-Accretion on Blast Furnace Copper Stave and Industrial Application. J. Iron Steel Res. Int. 2012, 19, 1–5. [Google Scholar] [CrossRef]
- Xiang, Z.Y.; Wang, X.L. Blast Furnace Design—Theory and Practice of Ironmaking Process Design; Metallurgical Industry Press: Beijing, China, 2014; p. 388. [Google Scholar]
- Masahiro, I.; Shinroku, M.; Kazumoto, K.; Makoto, I. Development of Visual Evaluation and Numerical Analysis System of Blast Furnace; Nippon Steel Technical Report No. 89; Nippon Steel: Tokyo, Japan, 2004; pp. 38–45. [Google Scholar]
- Shinroku, M.; Masahiro, I.; Masaaki, N.; Kazumoto, K.; Makoto, I.; Nozomi, S.; Kenko, U.; Harutoshi, O. Development of the Visualizing Information Technique of Blast Furnace Operation; Nippon Steel Technical Report No. 96; Nippon Steel: Tokyo, Japan, 2006; pp. 96–102. [Google Scholar]
- Shinroku, M.; Masahiro, I.; Atsushi, I. Development of Visualizing System of Blast Furnace Operation and Application to Operation; Nippon Steel Technical Report; Nippon Steel: Tokyo, Japan, 2015; pp. 245–253. [Google Scholar]
- Wu, L.J.; Xu, X.; Zhou, W.G. Study on Intelligent Monitoring Methodology for Blast Furnace Stave. Iron Steel 2008, 43, 13–16. [Google Scholar]
- Lu, Z.A.; Wu, L.J.; Zhou, W.G.; Sun, G.P.; Xiong, L.Y. Intelligent Monitoring of Blast Furnace Stave Hot Surface Status. Iron Steel 2010, 45, 22–26. [Google Scholar]
- Liu, Z.X.; Li, Z.; Chai, Q.F.; Lü, Q. Heat Transfer Analysis of Slag Skull Growth for BF Copper Stave. Iron Steel 2010, 45, 12–15. [Google Scholar]
- Jiao, K.X.; Zhang, J.L.; Zuo, H.B.; Shen, M.; Tie, J.Y.; Li, F.G. Thermal Trial Analysis on Unsteady Heat Transfer for Blast Furnace Cooling Stave. Iron Steel 2014, 49, 32. [Google Scholar]
- Maarten, G.; Rénard, C.; Ivan, K.; Oscar, L.; John, R. Modern Blast Furnace Ironmaking; IOS Press: Delft, The Netherlands, 2015; pp. 172–174. [Google Scholar]
- Yasuo, O.; Yaasuhito, S.; Junichiro, V.; Masakazu, N.; Tsutomu, F. Blast Furnace Phenomena and Modelling; Elsevier Applied Science Publishers Ltd.: Amsterdam, The Netherlands, 1987; pp. 207–220. [Google Scholar]
- Andrew, S.; Afashin, S.; Ian, C.; Maciej, J.; Rick, B.; Barry, H. Preserving Copper Staves and Extending Blast Furnace Campaign Life. In Proceedings of the AISTech 2014 Proceedings, Indianapolis, IN, USA, 5–8 May 2014; pp. 715–719. [Google Scholar]
- Cegna, G.; Lingiardi, O.; Musante, R. Copper Stave Wear-Ternium Siderar BF2 Experience. In Proceedings of the AISTech 2014 Proceedings, Indianapolis, IN, USA, 5–8 May 2014; pp. 683–687. [Google Scholar]
- Afshin, S.; Barry, H.; Brad, D.; Koorosh, M. Accurate and Flexible NDT Measurements of Copper and Cast Iron Stave Thickness in the Blast Furnace. In Proceedings of the AISTech 2013 Proceedings, Pittsburgh, PA, USA, 6–9 May 2013; pp. 629–636. [Google Scholar]
- Che, Y.; Sun, P.; Li, L.P.; Sun, B.; Guo, T.Y. The development and application of the inner profile management model in Angang’s BF lined with the Copper stave. Ironmaking 2007, 26, 18–21, 32. [Google Scholar]
- Zhang, X.Z. Metallurgical Transmission Principles; Metallurgical Industry Press: Beijing, China, 1998; pp. 295–300, 432. [Google Scholar]
- Liu, D.L.; Chen, L.K. Development and application of No. 7 BF condition diagnosis system in WISCO. Metall. Ind. Autom. 2021, 45, 26–33. [Google Scholar]
- Xu, X.; Wu, L.J.; Yuan, Z.K. Thermal test and numerical simulation of cooling stave with internal ribbed tube. J. Iron Steel Res. 2022, 29, 1197–1204. [Google Scholar] [CrossRef]
- Liu, S.H.; Hua, J.M. Analysis on the operation and maintenance practice of Baosteel’s BF copper cooling stave. Ironmaking 2020, 39, 1–6. [Google Scholar]
- Shao, Q.; Lin, S.; Zhang, F. Practice of furnace type management for Benxi Steel’s No. 6 blast furnace. Ironmaking 2021, 40, 44–48. [Google Scholar]
- Zeng, W.T.; Zhang, Q.X. Maintenance technology for operating profile of BF with copper stave. Ironmaking 2021, 40, 6–10. [Google Scholar]
- Du, P.; Lei, M.; Jiang, D.W.; Wang, Z.Y.; Zhang, J.L.; Xu, Z. Clustering analysis of blast furnace profile based on blast furnace cooling stave temperature. Metall. Ind. Autom. 2023, 47, 109–115. [Google Scholar]
- Shen, D.; Chen, M.J.; She, J.P. Discussion on optimization of BF copper cooling stave design. Ironmaking 2020, 39, 7–12. [Google Scholar]
Sample No. | SiO2 | Al2O3 | CaO | TFe | FeO | MgO | K2O | Na2O | TiO2 | Zn | CuO | C |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 18.27 | 30.14 | 28.82 | 7.27 | 8.84 | 2.53 | 0.16 | 0.45 | 0.51 | 0.02 | 0.46 | 1.16 |
2 | 16.56 | 31.00 | 24.26 | 9.65 | 11.12 | 0.56 | 0.26 | 0.41 | 0.61 | 0.72 | 0.75 | 1.93 |
3 | 20.32 | 35.17 | 25.07 | 6.69 | 8.01 | 0.98 | 0.61 | 0.15 | 0.8 | 0.98 | 0.41 | 0.85 |
4 | 19.95 | 34.44 | 23.9 | 4.94 | 6.71 | 0.36 | 0.33 | 0.52 | 0.96 | 1.76 | 0.8 | 3.46 |
Sample No. | Thermal Conductivity W (m·K)−1 |
---|---|
1 | 1.451 |
2 | 1.526 |
3 | 1.541 |
4 | 1.495 |
Sample No. | ST (°C) | MT (°C) | FT (°C) |
---|---|---|---|
1 | 1434.1 | 1441.8 | 1466.9 |
2 | 1449.3 | 1454.3 | 1479.3 |
3 | 1432.2 | 1436.5 | 1464.2 |
4 | 1422.5 | 1427.1 | 1462.0 |
Parameter | Batches | Output Rate | Coke Ratio | Gas Utilization | Blast Volume |
---|---|---|---|---|---|
Correlation coefficient | −0.81 | −0.78 | 0.66 | −0.45 | −0.78 |
Location | 6th Section | 7th Section | 8th Section | 9th Section |
---|---|---|---|---|
Thickness of slag crust (mm) | 179.3 | 150.2 | 173.0 | 113.6 |
Number of damaged cooling water pipes | 10 | 25 | 21 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Zhang, W.; Xue, Z.; Song, C.; Chen, L. Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace. Metals 2024, 14, 19. https://doi.org/10.3390/met14010019
Liu D, Zhang W, Xue Z, Song C, Chen L. Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace. Metals. 2024; 14(1):19. https://doi.org/10.3390/met14010019
Chicago/Turabian StyleLiu, Dongliang, Wei Zhang, Zhengliang Xue, Chunhui Song, and Lingkun Chen. 2024. "Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace" Metals 14, no. 1: 19. https://doi.org/10.3390/met14010019
APA StyleLiu, D., Zhang, W., Xue, Z., Song, C., & Chen, L. (2024). Simulation and Validation of Thickness of Slag Crust on the Copper Stave in the High-Temperature Area of Blast Furnace. Metals, 14(1), 19. https://doi.org/10.3390/met14010019