Brittle Crack Arrest Temperature Estimation Method Utilizing a Small-Scale Test with a Thick Steel Plate for Shipbuilding
Abstract
:1. Introduction
2. Manufacturing of Fracture Toughness Test Specimens
3. Experimental Procedure
3.1. Large-Scale Brittle Crack Arrest Test Methods
3.2. Small-Scale Brittle Crack Arrest Test Method
4. Results and Discussion
4.1. Large-Scale Brittle Crack Arrest Test Results
4.2. Estimate of Brittle Crack Arrest Temperature (CAT) with Small-Scale Specimens
5. Conclusions
- (1)
- When the brittle crack arrest toughness of YP460MPa steel with a thickness of 100 mm was evaluated, a CAT value of −10 °C or less, as required by the IACS, was obtained, and the requirements were met.
- (2)
- When the NRL small-scale test was conducted on the surface and at the center, the surface’s toughness was higher than that at the center because the material did not have homogeneous properties in the thickness direction, owing to the nature of the thick material. The temperature difference was found to be approximately 30 °C.
- (3)
- To apply the NDTT obtained from small NRL specimens to thick materials, a formula for predicting CAT was developed by deriving NDTT on the surface and at the center in the thickness direction. This prediction formula makes it possible to predict the CAT of thick materials, such as materials with a thickness of 100 mm, through NRL experiments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LNG | Liquified natural gas |
TEU | Twenty-foot equivalent units |
IACS | International Association of Classification Societies |
BCA | Brittle crack arrest steel |
H/C | Hatch side coaming |
U/D | Upper deck |
CAT | Crack arrest temperature |
CATest. | Estimated CAT |
NDTT | Nil-ductility transition temperature |
NDTTs | Surface NDTT |
NDTTc | Center NDTT |
Brittle crack arrest toughness | |
EBW | Electron beam welding |
LTG | Local temperature gradient |
ASTM | American Society for Testing Materials |
References
- Inoue, T.; Ishikawa, T.; Imai, S.; Koseki, S.T.; Hirota, K.; Tada, M. Long crack arrestability of heavy-thick shipbuilding steels. In Proceedings of the 16th International Offshore and Polar Engineering Conference, San Francisco, CA, USA, 28 May–2 June 2006; Volume 4, pp. 132–136. [Google Scholar]
- Kawabata, T.; Inoue, T.; Tagawa, T.; Fukui, T.; Takashima, Y.; Shibanuma, K.; Aihara, S. Historical review of research on brittle crack propagation arresting technology for large welded steel structures developed in Japan with the application of Kca parameters. Mar. Struct. 2020, 71, 80–87. [Google Scholar] [CrossRef]
- Handa, T.; Matsumoto, T.; Yajima, H.; Aihara, S.; Yoshinari, H.; Hirota, K. Effect of structural discontinuities of welded joints on brittle crack propagation behavior—Brittle crack arrest design for large container carrier ships. In Proceedings of the 20th International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; Volume 4, pp. 88–94. [Google Scholar]
- Inoue, T.; Yamaguchi, Y.; Yajima, H.; Aihara, S.; Yoshinari, H.; Hirota, K. Required brittle crack arrest toughness Kca value with actual scale model tests-brittle crack arrest design for large container carrier ships. In Proceedings of the 20th International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; Volume 4, pp. 95–101. [Google Scholar]
- Wiesner, C.S.; Hayes, B.; Smith, S.D.; Willoughby, A. Investigations into the Mechanics of Crack Arrest in Large Plates of 1.5%Ni TMCP Steel. Fatigue Fract. Eng. Mater. Struct. 1994, 17, 221–233. [Google Scholar] [CrossRef]
- An, G.B.; Bae, H.Y.; Park, J.U. A Study of Brittle Crack Arrestability Test Method. J. Weld. Join. 2020, 38, 535–542. [Google Scholar] [CrossRef]
- Jang, Y.C.; Lee, Y.S.; An, G.B.; Park, J.S.; Lee, J.B.; Kim, S.I. Temperature dependent fracture model and its application to ultra heavy thick steel plate used for shipbuilding. Int. J. Mod. Phys. B 2008, 22, 5483–5488. [Google Scholar] [CrossRef]
- Shibanuma, K.; Tu, S.; Suzuki, S.; Yu, Z.; Kato, R.; Hatamoto, A. Ductile crack propagation path depending on material properties: Experimental results and discussions based on numerical simulations. Mater. Des. 2022, 223, 111158. [Google Scholar] [CrossRef]
- Machida, S.; Yoshinari, H.; Yasuda, M.; Aihara, S.; Mabuchi, H. Fracture mechanical modeling of brittle fracture propagation and arrest of steel (1)—A fundamental model. J. Jpn. Soc. Nav. Archit. Ocean Eng. 1995, 177, 243–257. [Google Scholar] [CrossRef]
- Aihara, S.; Machida, S.; Yoshinari, H.; Mabuchi, H. Fracture mechanical modeling of brittle fracture propagation and arrest of steel (2)—Application to temperature-gradient type test. J. Jpn. Soc. Nav. Archit. Ocean Eng. 1996, 178, 545–554. [Google Scholar]
- Aihara, S.; Machida, S.; Yoshinari, H.; Tsuchida, Y. Fracture mechanical modeling of brittle fracture propagation and arrest of steel (3)—Application to duplex type test. J. Jpn. Soc. Nav. Archit. Ocean Eng. 1996, 179, 389–398. [Google Scholar] [CrossRef]
- Bertolo, V.; Jiang, Q.; Terol, S.M.; Riemslag, T.; Walters., C.L.; Sietsma, J.; Popovich, V. Cleavage fracture micromechanisms in simulated heat affected zones of S690 high strength steels. Mate. Sci. Eng. A 2023, 868, 144762. [Google Scholar] [CrossRef]
- Chen, L.; Hu, Y.; Yang, K.; Yan, X.; Yu, X.; Yu, J.; Chen, S. Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline. Energy 2023, 283, 129060. [Google Scholar] [CrossRef]
- Smedley, G.P. Prediction and specification of crack arrest properties of steel pipe. Int. J. Press. Vessel. Pip. 1989, 40, 279–302. [Google Scholar] [CrossRef]
- Sumi, Y. Computational crack path prediction for brittle fracture in welding residual stress fields. Inter. J. Fract. 1990, 44, 189–207. [Google Scholar] [CrossRef]
- Priest, A.H. An energy balance in crack propagation an arrest. Eng. Fract. Mech. 1998, 61, 231–251. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, H.; Aihara, S.; Yoshinari, H.; Hirota, K.; Toyoda, M. Development of guidelines on brittle crack arrest design brittle crack arrest design for large container carrier ships. In Proceedings of the 20th International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; pp. 71–79. [Google Scholar]
- Nippon Kaiji Kyokai. Guidelines of the Application of YP47 Steel for Hull Structures of Large Container Carriers; Nippon Kaiji Kyokai: Tokyo, Japan, 2008. [Google Scholar]
- Gremanischer Lloyd. Supplementary Rules for Application of Steel with Yield Strength of 460N/mm2; Gremanischer Lloyd: Hamburg, Germany, 2008. [Google Scholar]
- American Bureau of Shipping. Regulations of the Classification and Registry of Ships; American Bureau of Shipping: Houston, TX, USA, 2008. [Google Scholar]
- Unified Rule S33. Requirements for Use of Extremely Thick Steel Plates in Container Ships Unified Rule S33; International Association of Classification Societies: London, UK, 2013. [Google Scholar]
- Handa, T.; Kubo, T.; Kawabata, F.; Nishimura, K.; Suzuki, S.; Shiomi, H.; Miyata, T. Effect of Kca value on behavior of brittle crack arrest in Tee joint structure of thick plate. Bull. Jpn. Soc. Nav. Archit. Ocean Eng. 2007, 4, 459–460. [Google Scholar]
- Taylor, J.; Mehmanparast, A.; Kulka, R.; Moore, P.; Xu, L.; Farrahi, G.H. Experimental study of the relationship between fracture initiation toughness and brittle crack arrest toughness predicted from small-scale testing. Theo. Appli. Frac. Mech. 2020, 110, 102799. [Google Scholar] [CrossRef]
- Handa, T.; Suzuki, S.; Toyoda, M.; Yokura, T.; Kiji, N.; Nakanishi, Y. Behavior of long brittle crack arrest in Tee joint structure of thick plate. Bull. Jpn. Soc. Nav. Archit. Ocean Eng. 2007, 4, 461–462. [Google Scholar]
- Nippon Kaiji Kyokai. W31 YP47 Steels and Brittle Crack Arrest Steels; Nippon Kaiji Kyokai: Tokyo, Japan, 2023. [Google Scholar]
- WES 2815; Test Method for Brittle Crack Arrest Toughness. The Japan Welding Engineering Society: Tokyo, Japan, 2014.
- Wiesner, C.S.; Hayes, B. A Review of Crack Arrest Tests, Models and Applications; TWI report; TWI Ltd.: Cambridge, UK, 1995. [Google Scholar]
- An, G.B.; Bae, H.Y.; Park, J.U. Development of Crack Arrest Temperature Test Method by Using a Local Temperature Gradient. J. Test. Eval. 2020, 48, 4241–4248. [Google Scholar] [CrossRef]
- ASTM E208-06; Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels. American Society for Testing and Materials: West Conshohocken, PA, USA, 2012.
- Oie, N.; Kawabata, T.; Kishiki, S.; Nakagomi, T. Specimen size effect on the brittle fracture properties of steel for buildings subjected to large earthquakes. Procedia Struct. Integr. 2021, 33, 586–597. [Google Scholar] [CrossRef]
- Taylor, J.; Mehmanparast, A.; Kulka, R.; Moore, P.; Hossein, G.F.; Xu, L. Compact crack arrest testing and analysis of EH47 shipbuilding steel. Theo. Appl. Frac. Mech. 2021, 114, 103004. [Google Scholar] [CrossRef]
Material | Chemical Composition (Mass, %) | |||||
---|---|---|---|---|---|---|
C | Si | Mn | Cu | P | S | |
YP460 | ≤0.1 | ≤0.5 | ≤2.0 | ≤0.02 | ≤0.02 | ≤0.01 |
Material | Thickness (mm) | Yield Strength (MPa) | Tensile Strength (MPa) | Elongation (%) | Charpy Impact Energy (J, −40 °C) |
---|---|---|---|---|---|
YP460 | 100 mm | 497 | 610 | 22 | 270 (transverse) |
Type of Specimen | Specimen Size, mm | Span, mm | Deflection Stop, mm | Yield Strength Level, MPa | Drop-Weight Energy for a Given Yield Strength Level, J |
---|---|---|---|---|---|
P-1 | 25.4/89/356 | 305 | 7.6 | 210~340 340~480 480~620 620~760 | 800 1100 1350 1650 |
P-2 | 19/51/127 | 102 | 1.5 | 210~410 410~620 620~830 830~1030 | 350 400 450 550 |
P-3 | 15.9/51/127 | 102 | 1.9 | 210~410 410~620 620~830 830~1030 | 350 400 450 550 |
Specimen No. | Thickness (mm) | Crack Arrest Temperature Test | |||
---|---|---|---|---|---|
Applied Stress (MPa) | Test Temp. (°C) | Crack Arrest Length | CAT | ||
1-1 | 100 | 307 | −25 | Arrest (170 mm) | −35 °C < CAT ≤ −30 °C |
1-2 | −30 | Arrest (180 mm) | |||
1-3 | −35 | Fracture (500 mm) | |||
2-1 | 100 | 307 | −25 | Arrest (180 mm) | −35 °C < CAT ≤ −30 °C |
2-2 | −30 | Arrest (185 mm) | |||
2-3 | −35 | Fracture (500 mm) | |||
3-1 | 100 | 307 | −25 | Arrest (160 mm) | −35 °C < CAT ≤ −30 °C |
3-2 | −30 | Arrest (155 mm) | |||
3-3 | −35 | Fracture (500 mm) | |||
4-1 | 100 | 307 | −40 | Arrest (161 mm) | −45 °C < CAT ≤ −40 °C |
4-2 | −45 | Arrest (212 mm) | |||
4-3 | −45 | Fracture (500 mm) | |||
5-1 | 100 | 307 | −35 | Arrest (182 mm) | −45 °C < CAT ≤ −40 °C |
5-2 | −40 | Arrest (207 mm) | |||
5-3 | −40 | Arrest (239 mm) | |||
5-4 | −45 | Fracture (500 mm) | |||
6-1 | 100 | 307 | −35 | Arrest (229 mm) | −45 °C < CAT ≤ −40 °C |
6-2 | −40 | Arrest (303 mm) | |||
6-3 | −40 | Arrest (303 mm) | |||
6-4 | −45 | Fracture (500 mm) |
No. | Strength | Test Positions | NRL Test Temperature and Results (℃) | NDTT (°C) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YP | TS | −65 | −70 | −75 | −80 | −85 | −90 | −95 | −100 | −105 | −110 | −115 | −120 | −125 | −130 | |||
1 | 493 | 607 | S | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −95 | |||||
◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | ||||||||||
C | ◐ | ⬤ | ⬤ | −65 | ||||||||||||||
◐ | ⬤ | ⬤ | ||||||||||||||||
2 | 496 | 609 | S | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −95 | |||||
◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | ||||||||||
C | ◐ | ◐ | ◐ | ⬤ | ⬤ | −75 | ||||||||||||
◐ | ◐ | ◐ | ⬤ | ⬤ | ||||||||||||||
3 | 491 | 603 | S | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −100 | |||||
◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | ||||||||||
C | ◐ | ◐ | ⬤ | ⬤ | −75 | |||||||||||||
◐ | ◐ | ⬤ | ⬤ | |||||||||||||||
4 | 498 | 607 | S | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −100 | ||||
◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | |||||||||
C | ◐ | ◐ | ◐ | ⬤ | ⬤ | −75 | ||||||||||||
◐ | ◐ | ◐ | ⬤ | ⬤ | ||||||||||||||
5 | 504 | 614 | S | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | −125 |
◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | |||||
C | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −80 | |||||||||||
◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | |||||||||||||
6 | 495 | 604 | S | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −110 | ||
◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | |||||||
C | ◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ | −85 | ||||||||||
◐ | ◐ | ◐ | ◐ | ◐ | ⬤ | ⬤ |
Specimen No. | Thick. (mm) | Applied Stress, σ (MPa) | Surface NDTT(S) (°C) | Center NDTT(C) (°C) | (NDTT(S) + NDTT(C))/2 (°C) | CATexp. (°C) | CATest. (°C) |
---|---|---|---|---|---|---|---|
1 | 100 | 307 | −95 | −65 | −80 | −30 | −20.7 |
2 | 100 | 307 | −95 | −75 | −85 | −30 | −29.4 |
3 | 100 | 307 | −100 | −75 | −87.5 | −30 | −29.9 |
4 | 100 | 307 | −125 | −80 | −102.5 | −40 | −37.34 |
5 | 100 | 307 | −125 | −80 | −102.5 | −45 | −37.4 |
6 | 100 | 307 | −110 | −85 | −97.5 | −40 | −39.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, G.; Park, J.; Seong, D.; Seo, J. Brittle Crack Arrest Temperature Estimation Method Utilizing a Small-Scale Test with a Thick Steel Plate for Shipbuilding. Metals 2024, 14, 39. https://doi.org/10.3390/met14010039
An G, Park J, Seong D, Seo J. Brittle Crack Arrest Temperature Estimation Method Utilizing a Small-Scale Test with a Thick Steel Plate for Shipbuilding. Metals. 2024; 14(1):39. https://doi.org/10.3390/met14010039
Chicago/Turabian StyleAn, Gyubaek, Jeongung Park, Daehee Seong, and Junseok Seo. 2024. "Brittle Crack Arrest Temperature Estimation Method Utilizing a Small-Scale Test with a Thick Steel Plate for Shipbuilding" Metals 14, no. 1: 39. https://doi.org/10.3390/met14010039
APA StyleAn, G., Park, J., Seong, D., & Seo, J. (2024). Brittle Crack Arrest Temperature Estimation Method Utilizing a Small-Scale Test with a Thick Steel Plate for Shipbuilding. Metals, 14(1), 39. https://doi.org/10.3390/met14010039