Coupling Effect of Mn Addition and Deformation on Mechanical and Electrical Properties of Al-Zr Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Effect of Mn Addition on Grain Evolution
3.2. The Effect of Mn Addition on Aging Precipitations
3.3. The Effect of Mn Addition on Mechanical/Electrical Properties
3.3.1. The Cast and Solutionized Alloys
3.3.2. The Hot-Deformed Alloys
4. Discussion
4.1. Strengthening Mechanisms of the Alloys with and without Deformation
4.1.1. The Alloys without Deformation
4.1.2. The Alloys with Deformation
4.2. Coupling Effect of the Mn Addition with Deformation
5. Conclusions
- (1)
- The addition of Mn to Al-Zr alloys significantly reduces the grain size in the cast condition while having a negligible grain-refining effect in the hot-rolling condition. The Mn addition completely suppresses the Al3Zr precipitation, but promotes the intergranular Al2Zr precipitation and Mn-rich particle precipitation in the deformation case.
- (2)
- A 0.16 wt.% Mn addition causes an apparent decrease in both hardness and electrical conductivity in the Al-Zr alloy, in both hot-deformed and undeformed cases. With a higher 0.88 wt.% Mn addition, however, the hardness of Al-Zr alloy is significantly increased, by over 40%.
- (3)
- A positive coupling of Mn addition and deformation is only realized in the case of higher Mn added. With no Mn addition, deformation slightly increases both the hardness and the electrical conductivity in the Al-Zr alloy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hornbogen, E.; Starke, E.A., Jr. Theory Assisted Design of High Strength Low Alloy Aluminum. Acta Metall. Mater. 1993, 41, 1–16. [Google Scholar] [CrossRef]
- King, F. Aluminium and Its Alloys; Ellis Horwood Ltd.: Chichester, UK, 1987. [Google Scholar]
- Liu, G.; Zhang, G.J.; Ding, X.D.; Sun, J.; Chen, K.H. Modeling the Strengthening Response to Aging Processing of Heat-treatable Aluminum Alloys Containing Plate/disc or Rod/needle-shaped Precipitates. Mater. Sci. Eng. A 2003, 344, 113–124. [Google Scholar] [CrossRef]
- Deschamps, A.; Livet, F.; Bréchet, Y. Influence of Pre-deformation on Ageing in An Al-Zn-Mg alloy-I. Microstructure Evolution and Mechanical Properties. Acta Mater. 1998, 47, 281–292. [Google Scholar] [CrossRef]
- Starink, M.J.; Wang, S.C. A Model for The Yield Strength of Overaged Al-Zn-Mg-Cu Alloys. Acta Mater. 2003, 51, 5131–5150. [Google Scholar] [CrossRef]
- Alvarez-Antolin, F.; Amghouz, Z.; Cofiño-Villar, A.; Gonzalez-Pociño, A.; Melero, M.G. Decrease in Electrical Resistivity below 28 nΩm by Aging in Hyperperitectic Al-Zr Alloys Treated at High Temperatures. Metals 2021, 11, 1171. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, H.; Zhu, J.; Wang, B.; Yi, D. Relationship between Electrical Resistivity and Al3(Zr, Sc) Core-shell Dispersoids of Al-Zr-Sc Electrical Transmission Cable: Modeling and Experimental Results. Electr. Power Syst. Res. 2019, 168, 1–7. [Google Scholar] [CrossRef]
- Mohammadi, A.; Enikeev, N.A.; Murashkin, M.Y.; Arita, M.; Edalati, K. Developing Age-hardenable Al-Zr Alloy by Ultra-severe Plastic Deformation: Significance of Supersaturation, Segregation and Precipitation on Hardening and Electrical Conductivity. Acta Mater. 2021, 203, 116503. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Precipitation Evolution in Al-Zr and Al-Zr-Ti Alloys During Aging at 450–600 °C. Acta Mater. 2008, 56, 1182–1195. [Google Scholar] [CrossRef]
- Orlova, T.S.; Latynina, T.A.; Mavlyutov, A.M.; Murashkin, M.Y.; Valiev, R.Z. Effect of Annealing on Microstructure, Strength and Electrical Conductivity of the Pre-aged and HPT-processed Al-0.4Zr Alloy. J. Alloys Comp. 2019, 784, 41–48. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, J. A Review on Aluminum Alloy Conductors Influenced by Alloying Elements and Thermomechanical Treatments: Microstructure and Properties. J. Mater. Res. 2023, 38, 1488–1509. [Google Scholar] [CrossRef]
- Knipling, K.E.; Dunand, D.C.; Seidman, D.N. Criteria for Developing Castable, Creep-resistant Aluminum-based Alloys—A Review. Z. fuer Metall. 2006, 97, 246–265. [Google Scholar] [CrossRef]
- Massalski, T.B. Binary Alloy Phase Diagrams; ASM International: Metals Park, OH, USA, 1990; Volume 1. [Google Scholar]
- Benson, R.B., Jr.; Withrow, S.P.; Pennycook, S.J. Formation of an Al6Mn precipitate in aluminum annealed after implantation with 3.5 atomic percent manganese. Mater. Lett. 1988, 6, 93–95. [Google Scholar] [CrossRef]
- Jia, Z.H.; Hu, G.Q.; Forbord, B.; Solberg, J.K. Effect of Homogenization and Alloying Elements on Recrystallization Resistance of Al-Zr-Mn Alloys. Mater. Sci. Eng. A 2007, 444, 284–290. [Google Scholar] [CrossRef]
- Broer, J.; Mallow, S.; Oldenburg, K.; Milkereit, B.; Kessler, O. The Influence of Homogenisation Parameters on the Microstructure and Hardness of AlMnFeMgSi(Zr) Wrought Alloys. Metals 2023, 13, 1706. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Ding, L.P.; Liu, M.P.; Zeng, Y.; Lei, X.C.; Weng, Y.Y.; Wang, K.; Jia, Z.H. The Effects of Double-Step Homogenization on Precipitation Behavior of Al3Zr Dispersoids and Microstructural Evolution in 2196 Aluminum Alloy. Metals 2023, 13, 1018. [Google Scholar] [CrossRef]
- Chen, B.A.; Liu, G.; Wang, R.H.; Zhang, J.Y.; Jiang, L.; Song, J.J.; Sun, J. Effect of Interfacial Solute Segregation on Ductile Fracture of Al-Cu-Sc Alloys. Acta Mater. 2013, 61, 1676–1690. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, P.; Shao, D.; Wang, R.H.; Cao, L.F.; Zhang, J.Y.; Liu, G.; Chen, B.A.; Sun, J. The Influence of Sc Solute Partitioning on The Microalloying Effect and Mechanical Properties of Al-Cu Alloys with Minor Sc Addition. Acta Mater. 2016, 119, 68–79. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Q.; Li, L.; Huang, M.D.; Zheng, Z.K.; Wen, S.P. Thermal Stability of the Precipitates in Dilute Al-Er-Zr/Hf Alloys at Elevated Temperature. Metals 2022, 12, 1242. [Google Scholar] [CrossRef]
- Hÿtch, M.J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146. [Google Scholar] [CrossRef]
- Ungár, T.; Gubicza, J.; Ribárik, G.; Borbély, A. Crystallite Size Distribution and Dislocation Structure Determined by Diffraction Profile Analysis: Principles and Practical Application to Cubic and Hexagonal Crystals. J. Appl. Crystallogr. 2001, 34, 298–310. [Google Scholar] [CrossRef]
- Gubicza, J.; Balogh, L.; Hellmig, R.J.; Estrin, Y.; Ungár, T. Dislocation Structure and Crystallite Size in Severely Deformed Copper by X-ray Peak Profile Analysis. Mater. Sci. Eng. A 2005, 400, 334–338. [Google Scholar] [CrossRef]
- May, J.; Dinkel, M.; Amberger, D.; Höppel, H.W.; Göken, M. Mechanical Properties, Dislocation Density and Grain Structure of Ultrafine-grained Aluminum and Aluminum-Magnesium Alloys. Metall. Mater. Trans. A 2007, 38, 1941–1945. [Google Scholar] [CrossRef]
- Krakauer, B.W.; Seidman, D.N. Systematic Procedures for Atom-probe Field-ion Microscopy Studies of Grain Boundary Segregation. Rev. Sci. Instr. 1992, 63, 4071–4079. [Google Scholar] [CrossRef]
- Nokhrin, A.V.; Gryaznov, M.Y.; Shotin, S.V.; Nagicheva, G.S.; Chegurov, M.K.; Bobrov, A.A.; Kopylov, V.I.; Chuvil’deev, V.N. Effect of Sc, Hf, and Yb Additions on Superplasticity of a Fine-Grained Al-0.4%Zr Alloy. Metals 2023, 13, 133. [Google Scholar] [CrossRef]
- Bourgeois, L.; Zhang, Y.; Zhang, Z.; Chen, Y.; Medhekar, N.V. Transforming Solid-state Precipitates via Excess Vacancies. Nature Comm. 2020, 11, 1248. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Soreide, H.S.; Chen, B.; Bian, J.J.; Yang, C.; Li, C.; Zhang, P.; Cheng, P.M.; Zhang, J.Y.; Peng, Y.; et al. Freezing Solute Atoms in Nanograined Aluminum Alloys via High-density Vacancies. Nat. Commun. 2022, 13, 3495. [Google Scholar] [CrossRef] [PubMed]
- Hardy, H.K. The Aging Characteristics of Ternary Aluminum-Copper Alloys with Cadmium, Indium, or Tin. Inst. Met. 1952, 80, 483–492. [Google Scholar]
- Pogatscher, S.; Antrekowitsch, H.; Werinos, M.; Moszner, F.; Gerstl, S.S.A.; Francis, M.F.; Curtin, W.A.; Löffler, J.F.; Uggowitzer, P.J. Diffusion on Demand to Control Precipitation Aging: Application to Al-Mg-Si Alloys. Phys. Rev. Lett. 2014, 112, 225701. [Google Scholar] [CrossRef]
- Wolverton, C. Solute-vacancy Binding in Aluminum. Acta Mater. 2007, 55, 5867–5872. [Google Scholar] [CrossRef]
- Rupert, T.J.; Trenkle, J.C.; Schuh, C.A. Enhanced Solid Solution Effects on The Strength of Nanocrystalline Alloys. Acta Mater. 2011, 59, 1619–1631. [Google Scholar] [CrossRef]
- Chookajorn, T.; Murdoch, H.A.; Schuh, C.A. Design of Stable Nanocrystalline Alloys. Science 2012, 337, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shi, Y.N.; Sauvage, X.; Sha, G.; Lu, K. Grain Boundary Stability Governs Hardening and Softening in Extremely Fine Nanograined Metals. Science 2017, 355, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Orlova, T.S.; Mavlyutov, A.M.; Sadykov, D.I.; Enikeev, N.A.; Murashkin, M.Y.; Clayton, J.D. Effect of Deformation-Induced Plasticity in Low-Alloyed Al-Mg-Zr Alloy Processed by High-Pressure Torsion. Metals 2023, 13, 1570. [Google Scholar] [CrossRef]
- Allamki, A.; Al-Maharbi, M.; Qamar, S.Z.; Al-Jahwari, F. Precipitation Hardening of the Electrical Conductor Aluminum Alloy 6201. Metals 2023, 13, 1111. [Google Scholar] [CrossRef]
- Voncina, M.; Paulin, I.; Medved, J.; Petric, M. Predicting the Quality of Grain Refiners from Electrical Resistance Measurements of Aluminum. Metals 2023, 13, 717. [Google Scholar] [CrossRef]
- Dash, S.S.; Chen, D.L. A Review on Processing-Microstructure-Property Relationships of Al-Si Alloys: Recent Advances in Deformation Behavior. Metals 2023, 13, 609. [Google Scholar] [CrossRef]
- Starink, M.J.; Gao, N.; Davin, L.; Yan, J.; Cerezo, A. Room Temperature Precipitation in Quenched Al-Cu-Mg Alloys: A Model for the Reaction Kinetics and Yield Strength Development. Philos. Mag. 2005, 85, 1395–1417. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Holmedal, B.; Li, Y.J.; Sagvolden, E.; Løvvik, O.M. Multi-component Solid Solution and Cluster Hardening of Al-Mn-Si alloys. Mater. Sci. Eng. A 2015, 625, 153–157. [Google Scholar] [CrossRef]
- Marceau, R.K.W.; de Vaucorbeil, A.; Sha, G.; Ringer, S.P.; Poole, W.J. Analysis of Strengthening in AA6111 During the Early Stages of Aging: Atom Probe Tomography and Yield Stress Modelling. Acta Mater. 2013, 61, 7285–7303. [Google Scholar] [CrossRef]
- Bailey, J.E.; Hirsch, P.B. The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-worked Polycrystalline Silver. Philos. Mag. 1960, 5, 485–497. [Google Scholar] [CrossRef]
Alloys | Al | Zr | Mn | Si | Fe |
---|---|---|---|---|---|
AlZr | Bal. | 0.18 | - | 0.04 | 0.09 |
AlZrMn-1 | Bal. | 0.17 | 0.16 | 0.05 | 0.14 |
AlZrMn-2 | Bal. | 0.18 | 0.88 | 0.05 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Lai, Y.; Liu, B.; Chen, B. Coupling Effect of Mn Addition and Deformation on Mechanical and Electrical Properties of Al-Zr Alloys. Metals 2024, 14, 63. https://doi.org/10.3390/met14010063
Wang R, Lai Y, Liu B, Chen B. Coupling Effect of Mn Addition and Deformation on Mechanical and Electrical Properties of Al-Zr Alloys. Metals. 2024; 14(1):63. https://doi.org/10.3390/met14010063
Chicago/Turabian StyleWang, Ruihong, Yulei Lai, Bilong Liu, and Bao’an Chen. 2024. "Coupling Effect of Mn Addition and Deformation on Mechanical and Electrical Properties of Al-Zr Alloys" Metals 14, no. 1: 63. https://doi.org/10.3390/met14010063
APA StyleWang, R., Lai, Y., Liu, B., & Chen, B. (2024). Coupling Effect of Mn Addition and Deformation on Mechanical and Electrical Properties of Al-Zr Alloys. Metals, 14(1), 63. https://doi.org/10.3390/met14010063