Critical Evaluation and Thermodynamic Optimization of the Cr–P and Cr–Fe–P Systems
Abstract
:1. Introduction
2. Thermodynamic Models
2.1. Gas Phase
2.2. Elementary Substance and Stoichiometric Compounds
2.3. Solid Solutions
2.4. Liquid Solution
3. Critical Evaluation and Thermodynamic Optimization
3.1. The Cr–P System
3.1.1. The Cr–P Phase Diagram
3.1.2. Thermodynamic Stability of Cr Phosphides
3.1.3. Thermodynamic Properties of the Cr–P Liquid Solution
3.2. The Cr–Fe and Fe–P Systems
3.3. The Cr–Fe–P Systems
3.3.1. The Cr–Fe–P Phase Diagram
3.3.2. Thermodynamic Properties of the Cr–Fe–P Melts
3.3.3. Improvement of Present Optimization Compared to Previous Assessments
4. Predicted Phase Diagram of the Cr–Fe–P System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Xu, T.; Yao, J.; Zhuo, L.; Jie, Z. Tuning non-isothermal crystallization kinetics between Fe20Co20Ni20Cr20(P0.45B0.2C0.35)20 high-entropy metallic glass and the predecessor Fe75Cr5P9B4C7 metallic glass. Metals 2023, 13, 1624. [Google Scholar] [CrossRef]
- Li, B.; Lin, A.; Wu, X.; Zhang, Y.; Gan, F. Electrodeposition and characterization of Fe–Cr–P amorphous alloys from trivalent chromium sulfate electrolyte. J. Alloys Compd. 2008, 453, 93–101. [Google Scholar] [CrossRef]
- Das, S.; Seol, J.B.; Kim, Y.C.; Park, C.G. Microscopic analysis of Fe–Cr alloy produced by single roll strip casting. Mater. Sci. Technol. 2011, 27, 1461–1464. [Google Scholar] [CrossRef]
- Zorc, M.; Zorc, B.; Medved, J.; Nagode, A. A preliminary study of new experimental low-cost Fe–P-based and Mn–Fe–P-based brazing filler metals for brazing of non-alloy and low-alloy steels. Metals 2023, 13, 1513. [Google Scholar] [CrossRef]
- Lu, S.; Chen, X.; Zheng, Q. Effects of the substitution of B and C for P on magnetic properties of FePCB amorphous alloys. Metals 2024, 14, 757. [Google Scholar] [CrossRef]
- Andersson, J.O.; Sundman, B. Thermodynamic properties of the chromium–iron system. CALPHAD 1987, 11, 83–92. [Google Scholar] [CrossRef]
- Chart, T.; Putland, F.; Dinsdale, A. Calculated phase equilibriums for the chromium–iron–nickel–silicon system. I. Ternary equilibriums. Calphad 1980, 4, 27–46. [Google Scholar] [CrossRef]
- Hertzman, S.; Sundman, B. A thermodynamic analysis of the iron–chromium system. Calphad 1982, 6, 67–80. [Google Scholar] [CrossRef]
- Lee, B.J. Revision of thermodynamic descriptions of the iron–chromium and iron–nickel liquid phases. Calphad 1993, 17, 251–268. [Google Scholar]
- Xiong, W.; Hedström, P.; Selleby, M.; Odqvist, J.; Thuvander, M.; Chen, Q. An improved thermodynamic modeling of the Fe–Cr system down to zero kelvin coupled with key experiments. Calphad 2011, 35, 355–366. [Google Scholar] [CrossRef]
- Spencer, P.; Kubaschewski, O. A Thermodynamic assessment of the Fe–P system. Arch. Eisenhuettenwes. 1978, 49, 225–228. [Google Scholar]
- Gustafson, P. Internal Report IM–2549; Swedish Institue for Metals Research: Stockholm, Sweden, 1990. [Google Scholar]
- Shim, J.H.; Oh, C.S.; Lee, D.N. Thermodynamic properties and calculation of phase diagram of the Fe–P system. J. Korean. Inst. Met. Mater. 1996, 34, 1385–1393. [Google Scholar]
- Ohtani, H.; Hanaya, N.; Hasebe, M.; Teraoka, S.I.; Abe, M. Thermodynamic analysis of the Fe–Ti–P ternary system by incorporating first–principles calculations into the CALPHAD approach. Calphad 2006, 30, 147–158. [Google Scholar] [CrossRef]
- Cao, Z.M.; Wang, K.P.; Qiao, Z.Y.; Du, G.W. Thermodynamic reoptimization of the Fe–P system. Acta Phys. Chim. Sin. 2012, 28, 37–43. [Google Scholar]
- Cao, Z.M.; Xie, W.; Wang, K.P.; Niu, C.J.; Du, G.W.; Qiao, Z.Y. Thermodynamic optimization of the Al–Fe–P ternary system. Acta Phys. Chim. Sin. 2013, 29, 2148–2156. [Google Scholar]
- Bernhard, M.; Kang, Y.B.; Presoly, P.; Gheribi, A.E.; Bernhard, C. Critical evaluation and thermodynamic modeling of the Fe–P and Fe–C–P system. Calphad 2020, 70, 101795. [Google Scholar] [CrossRef]
- Cui, S.; Jung, I.-H. Thermodynamic modeling of the Cu–Fe–Cr and Cu–Fe–Mn systems. Calphad 2017, 56, 241–259. [Google Scholar] [CrossRef]
- You, Z.M.; Jung, I.-H. Critical evaluation and optimization of the Fe–P system. Metall. Mater. Trans. B 2020, 51B, 3108–3129. [Google Scholar] [CrossRef]
- Miettinen, J. Thermodynamic description of Cr–P and Fe–Cr–P systems at low phosphorus contents. Calphad 1999, 23, 141–154. [Google Scholar] [CrossRef]
- Miettinen, J.; Vassilev, G. Thermodynamic description of ternary Fe–X–P Systems. Part 1: Fe–Cr–P. J. Phase Equilib. Diffus. 2014, 35, 458–468. [Google Scholar] [CrossRef]
- Bale, W.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Mahfoud, R.B.; Petersen, S. FactSage thermochemical software and databases. Calphad 2002, 26, 189–228. [Google Scholar] [CrossRef]
- Dinsdale, T. SGTE data for pure elements. Calphad 1991, 15, 317–425. [Google Scholar] [CrossRef]
- Inden, G. Project Meeting CALPHAD V; Max–Planck–Inst, Eisenforschung: Dusseldorf, Germany, 1976; Volume 111. [Google Scholar]
- Hillert, M.; Jarl, M. A model for alloying in ferromagnetic metals. Calphad 1978, 2, 227–238. [Google Scholar] [CrossRef]
- Hillert, M. The Compound Energy Formalism. J. Alloys Compd. 2001, 320, 161–176. [Google Scholar] [CrossRef]
- Pelton, A.D.; Degterov, S.A.; Eriksson, G.; Robelin, C.; Dessureault, Y. The Modified Quasichemical Model I–binary solutions. Metall. Mater. Trans. B 2000, 31, 651–659. [Google Scholar] [CrossRef]
- Pelton, A.D.; Chartrand, P. The Modified Quasi–chemical Model: Part II. Multicomponent solutions. Metall. Mater. Trans. A 2001, 32, 1355–1360. [Google Scholar] [CrossRef]
- Huang, W. An assessment of the Fe–Mn system. Calphad 1989, 13, 243–252. [Google Scholar] [CrossRef]
- Arstad, O.; Nowotny, H. X-ray investigation of the system Mn–P. Z. Phys. Chem. 1937, 38, 356–358. [Google Scholar]
- Nowotny, H.; Henglein, E. Investigation of the system Cr–P. Z. Anorg. Allg. Chem. 1938, 239, 14–16. [Google Scholar] [CrossRef]
- Vogel, R.; Kasten, G.W. The system iron–chromium–phosphorus. Arch. Eisenhüttenwes. 1939, 12, 387–391. [Google Scholar] [CrossRef]
- Faller, F.E.; Biltz, W. On phosphides of tungsten, molybdenum and chromium. Z. Anorg. Allg. Chem. 1941, 248, 209–228. [Google Scholar] [CrossRef]
- Schönberg, N. An X-ray investigation of transition metal phosphides. Acta Chem. Scand. 1954, 8, 226–239. [Google Scholar] [CrossRef]
- Lundström, T. A ternary sigma phase in the system Cr–Ni–P. Acta Chem. Scand. 1962, 16, 149–154. [Google Scholar] [CrossRef]
- Rundquist, S. X-ray investigation of the ternary system Fe–P–B. Some features of the systems Cr–P–B, Mn–P–B, Co–P–B and Ni–P–B. Acta Chem. Scand. 1962, 16, 1–19. [Google Scholar] [CrossRef]
- Owusu, M.; Javad, H.; Lundström, T.; Rundquist, S. Crystallographic studies of Cr3P and of the solid solution of hydrogen in Zr3P. Phys. Scr. 1972, 6, 67–70. [Google Scholar] [CrossRef]
- Aronsson, B.; Lundström, T.; Rundquist, S. Borides, silicides and phosphides: A critical review of their preparation, properties and crystal chemistry. Acta Crystallogr. 1966, 20, 323–324. [Google Scholar]
- Lundström, T. Preparation and crystal chemistry of some refractory borides and phosphides. Ark. Kemi 1969, 31, 227–266. [Google Scholar]
- Baurecht, H.E.; Boller, H.; Nowotny, H. X-ray investigation in the ternary system Cr–P–C, Cr–As–C and Cr–P–B. Monatsh. Chem. 1971, 102, 373–384. [Google Scholar] [CrossRef]
- Roy–Montreuil, J.; Deyris, B.; Michel, A.; Rouault, A.; l’Heritier, P.; Nylund, A.; Senateur, J.P.; Fruchart, R. New MM’P and MM’As ternary compounds, metallic interactions and structures. Mater. Res. Bull. 1972, 7, 813–826. [Google Scholar] [CrossRef]
- Chun, H.K.; Carpenter, G.B. Redetermination of the crystal structures of Cr12P7. Acta Crystallogr. B. 1979, 35, 30–33. [Google Scholar] [CrossRef]
- Maaref, S.; Madar, R.; Chaudouet, P.; Senateur, J.P.; Fruchart, R. Crystal chemistry of M12P7 phases in relation with the M2P phosphides. J. Solid State Chem. 1981, 40, 131–135. [Google Scholar] [CrossRef]
- Myers, C.E.; Kisacky, G.A.; Klingert, J.K. Vaporization behavior of chromium phosphides. The solid two–phase regions CrP–Cr12P7, Cr12P7–Cr3P, and Cr3P–Cr. J. Electrochem. Soc. 1985, 132, 236–238. [Google Scholar] [CrossRef]
- Zaitsev, A.I.; Dobrokhotova, Z.V.; Litvina, A.D.; Elizarova, T.A.; Mogutnov, B.M. Thermodynamic properties of chromium phosphides. Inorg. Mater. 1995, 31, 1371–1380. [Google Scholar]
- Granger, A. On the phosphides of chromium and manganese. Compt. Rend. 1897, 124, 190–191. [Google Scholar]
- Granger, A. A contribution to the study of metallic phosphides. Ann. Chim. Phys. 1898, 14, 5–90. [Google Scholar]
- Maronneau, G. On the preparation of phosphides of nickel, cobalt and chromium. Compt. Rend. 1900, 130, 656–658. [Google Scholar]
- Diekmann, T.; Hanf, O. On some arsenides and phosphides of chromium. Z. Anorg. Chem. 1914, 86, 291–295. [Google Scholar]
- Ripley, R.L. The preparation and properties of some transition phosphides. J. Less–Common Met. 1962, 4, 496–503. [Google Scholar] [CrossRef]
- Rundquist, S. Phosphides of the B31(MnP) structure type. Acta Chem. Scand. 1962, 16, 287–292. [Google Scholar] [CrossRef]
- Boller, H.; Nowotny, H. Crystallochemical investigations of monophosphides and monoarsenides in the systems: Ti–(Cr, Mo, W)–(P, As). Monatsh. Chem. 1965, 96, 852–862. [Google Scholar] [CrossRef]
- Rundquist, S.; Nawapong, P.C. Crystal structure refinements of some MnP–type phosphides. Acta Chem. Scand. 1965, 19, 1006–1008. [Google Scholar] [CrossRef]
- Selte, K.; Kjekshus, A.; Andresen, A.F. Structural and magnetic properties of CrP. Acta Chem. Scand. 1972, 26, 4188–4190. [Google Scholar] [CrossRef]
- Selte, K.; Kjekshus, A. On phase transitions between the MnP and NiAs type structures. Acta Chem. Scand. 1973, 27, 3195–3206. [Google Scholar] [CrossRef]
- Selte, K.; Hjersing, H.; Kjekshus, A.; Andresen, A.F.; Fischer, P. Magnetic structures and properties of CrP1–xAsx. Acta Chem. Scand. 1975, 29, 695–698. [Google Scholar] [CrossRef]
- Jeitschko, W.; Donahue, P.C. High–pressure CrP2 and CrAs2 with OsGe2–type structure and crystal chemistry of transition metal dipnictides. Acta Crystallogr. B 1973, 29, 783–789. [Google Scholar] [CrossRef]
- Jeitschko, W.; Donahue, P.C. The high pressure synthesis, crystal structure, and properties of CrP4 and MoP4. Acta Crystallogr. B 1972, 28, 1893–1898. [Google Scholar] [CrossRef]
- Braun, D.J.; Jeitschko, W. On polyphosphides of chromium, manganese, ruthenium, and osmium. synthesis and crystal structure of RuP4 and OsP4. Z. Anorg. Allg. Chem. 1978, 445, 157–166. [Google Scholar] [CrossRef]
- Venkatraman, M.; Neumann, J.P. The Cr–P (chromium–phosphorus) system. J. Phase Equilib. 1990, 11, 430–434. [Google Scholar] [CrossRef]
- Fruchart, R.; Roger, A.; Senateur, J.P. Crystallographic and magnetic properties of solid solutions of the phosphides M2P, M= Cr, Mn, Fe, Co, and Ni. J. Appl. Phys. 1969, 40, 1250–1257. [Google Scholar] [CrossRef]
- Zaitsev, A.I.; Dobrokhotova, V.; Litvina, A.D.; Shelkova, N.E.; Mogutnov, B.M. Thermodynamic properties of chromium–phosphorus melts. Inorg. Mater. 1996, 32, 474–480. [Google Scholar]
- Glaum, R.; Gruehn, R. On the chemical vapor transport of chromium and manganese monophosphide. Experimental results and thermochemical calculations. Z. Anorg. Allg. Chem. 1989, 573, 24–42. [Google Scholar] [CrossRef]
- Schlesinger, M.E. The thermodynamic properties of phosphorus and solid binary phosphides. Chem. Rev. 2002, 102, 4267–4302. [Google Scholar] [CrossRef] [PubMed]
- Pogorelyi, V.I. Activity of phosphorus in the system chromium–phosphorus. Metall. Koksokhim. 1974, 39, 8–12. [Google Scholar]
- Kubaschewski, O.; Alcock, C.B. Metallurgical Thermochemistry, 5th ed.; Pergamon Press: Oxford, UK, 1979; Volume 24, pp. 1–462. [Google Scholar]
- Nagai, T.; Miyake, M.; Kimura, H.; Maeda, M. Determination of Gibbs free energy of formation of Cr3P by double Knudsen cell mass spectrometry. J. Chem. Thermodyn. 2008, 40, 471–475. [Google Scholar] [CrossRef]
- Pogorelyi, V.I.; Gasik, M.I. Thermodynamics of the chromium–phosphorus system. Proizvod. Ferrospl. 2012, 3, 31–36. [Google Scholar]
- Goto, M.; Tange, H.; Tokunaga, T.; Fujii, H.; Okamoto, T. Magnetic properties of the (Fe1–xMx)3P compounds. Jpn. J. Appl. Phys. 1977, 16, 2175–2179. [Google Scholar] [CrossRef]
- Thadani, P.; Toth, L.E.; Zbasnik, J. Low temperature heat capacities of transition metal phosphides. J. Phys. Chem. Solids 1975, 36, 987–991. [Google Scholar] [CrossRef]
- Sjöström, J.; Jarlborg, T. Band structures and magnetic properties in the iron phosphide compounds FeMnP, FeCrP and FeVP. J. Magn. Magn. Mater. 1991, 98, 85–91. [Google Scholar] [CrossRef]
- Kaneko, H.; Nishizawa, T.; Tamaki, K.; Tanifuji, A. Solubility of phosphorus in ɑ and γ–iron. Nippon. Kinzoku Gakkai–Si 1965, 29, 166–170. [Google Scholar]
- Kaneko, H. Phosphide-phases in ternary alloys of iron, phosphorus and other elements. J. Jpn. Inst. Met. 1965, 29, 159–165. [Google Scholar] [CrossRef]
- Frohberg, M.; Elliott, J.; Hadrys, H. Contribution to study of thermodynamics of complex solutions shown by example homogeneous Fe–Cr–P–C melts. Arch. Eisenhutten. 1968, 39, 587–593. [Google Scholar]
- Yamada, K.; Kato, E. Effect of dilute concentrations of Si, Al, Ti, V, Cr, Co, Ni, Nb and Mo on the activity coefficient of P in liquid iron. Trans. Iron Steel Inst. Jpn. 1983, 23, 51–55. [Google Scholar] [CrossRef]
- Zaitsev, A.I.; Shelkova, N.E.; Mogutnov, B.M. Thermodynamic properties of iron–chromium–phosphorus melts. Russ. J. Inorg. Chem. 1997, 42, 1567–1573. [Google Scholar]
Phase | Model Parameters |
---|---|
Liquid (Cr, Fe, P) | [18,19] |
[18,19] [19] [*] [19] [18] [*], [*], [*] | |
“Toop–like” interpolation with P as an asymmetric component [*] | |
BCC_A2 (Cr,Fe,P)1(Va)3 | , , [*] [*] |
[19] | |
[9] [21], [29] [19], [9] [29], [6], [6] | |
FCC_A1 (Cr,Fe,P)1(Va)1 | , , [*] [*] [19] [6] , [6] [6], [29] |
Sigma (Fe)8(Cr)4(Fe,Cr)18 | [6] [6] |
Me3P (Cr,Fe)3(P)1 | [19] [*] , [*] [*] [*] |
Me2P (Cr,Fe)2(P)1 | [19] [*] , [*] [*] [*] |
MeP (Cr,Fe)1(P)1 | [19] [*] , [*] [*] [*] |
CrP2 (Cr)1(P)2 | , [*] [*] |
FeP2 (Fe)1(P)2 | [19] [19] |
Type | Reactions | Temperature, °C | References |
---|---|---|---|
Eutectic | Liquid(xp = 0.134) → Cr(xp = 0) + Cr3P(xp = 0.25) | 1371 | [32] |
Liquid(xp = 0.134) → Cr(xp = 9.6 × 10−5) + Cr3P(xp = 0.25) | 1376 | [20] | |
Liquid(xp = 0.134) → Cr(xp = 2.7 × 10−5) + Cr3P(xp = 0.25) | 1376 | Present study | |
Incongruent | Liquid(xp = 0.220) + Cr2P(xp = 0.333) → Cr3P(xp = 0.25) | 1511 | [20] |
Liquid(xp = 0.208) + Cr2P(xp = 0.333) → Cr3P(xp = 0.25) | 1501 | Present study | |
Congruent | Liquid(xp = 0.333) → Cr2P(xp = 0.333) | 1642 | [20] |
Liquid(xp = 0.333) → Cr2P(xp = 0.333) | 1671 | Present study | |
Eutectic | Liquid(xp = 0.428) → Cr2P(xp = 0.333) + CrP(xp = 0.5) | 1469 | Present study |
Congruent | Liquid(xp = 0.5) → CrP(xp = 0.5) | 1518 | Present study |
Incongruent | Liquid(xp = 0.926) + CrP(xp = 0.5) → CrP2(xp = 0.667) | 1011 | Present study |
Eutectic | Liquid(xp = 0.9995) → CrP2(xp = 0.667) + P(xp = 1.0) | 579 | Present study |
Species | , kJ/mol | , J/(mol·K) | Techniques | References |
---|---|---|---|---|
Cr3P | −184.26 ± 6.4 | 93.3 94.3 | DSC KEM | [45] |
−123.23 ± 1.3 | 87.9 | MLE | [44] | |
−180.51 | 93.1 | Estimation | [64] | |
−177.58 | 108.4 | Assessment | [20] | |
−184.88 | 93.3 | Assessment | Present study | |
Cr2P | −168.75 ± 5.4 | 74.0 74.4 | DSC KEM | [45] |
−159.28 | 83.2 | Assessment | [20] | |
−169.89 | 74.0 | Assessment | Present study | |
CrP | −112.07 ± 3.0 | 39.7 | MLE | [44] |
−124.15 ± 8.4 | TM | [63] | ||
−138.06 | 46.9 | Estimation | [64] | |
−117.04 | 46.4 | Estimation | [65] | |
46.0 | Estimation | [66] | ||
−122.70 | 46.4 | Assessment | Present study | |
CrP2 | −232.94 | Estimation | [65] | |
−155.90 | 63.0 | Assessment | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Z.; Lai, Z.; Cui, S.; Jiang, Z.; Jung, I.-H. Critical Evaluation and Thermodynamic Optimization of the Cr–P and Cr–Fe–P Systems. Metals 2024, 14, 1116. https://doi.org/10.3390/met14101116
You Z, Lai Z, Cui S, Jiang Z, Jung I-H. Critical Evaluation and Thermodynamic Optimization of the Cr–P and Cr–Fe–P Systems. Metals. 2024; 14(10):1116. https://doi.org/10.3390/met14101116
Chicago/Turabian StyleYou, Zhimin, Zhijie Lai, Senlin Cui, Zhouhua Jiang, and In-Ho Jung. 2024. "Critical Evaluation and Thermodynamic Optimization of the Cr–P and Cr–Fe–P Systems" Metals 14, no. 10: 1116. https://doi.org/10.3390/met14101116
APA StyleYou, Z., Lai, Z., Cui, S., Jiang, Z., & Jung, I. -H. (2024). Critical Evaluation and Thermodynamic Optimization of the Cr–P and Cr–Fe–P Systems. Metals, 14(10), 1116. https://doi.org/10.3390/met14101116