Fluidity of Pure Aluminum in a Narrow Channel Die Gap during Die Casting
Abstract
:1. Introduction
2. Experimental Methods
3. Results
3.1. Effect of Plunger Speed and Die Temperature on Flow Length for Pure Aluminum with a 0.5 mm Die Gap
3.2. Effect of Plunger Speed and Die Temperature on Flow Length for Pure Aluminum with a 1 mm Die Gap
3.3. Effect of Plunger Speed and Die Temperature on Flow Length for ADC12 with a 0.5 mm Die Gap
4. Discussion
5. Conclusions
- (1)
- Conventionally, the flow length is expected to increase with increasing die temperature, plunger speed, and aluminum purity. However, in the present study, it was found that when the plunger speed was 0.2 m/s, the flow length at a die temperature of 30 °C was longer than that at 150 °C. The results for the die temperature of 30 °C the plunger speed of 0.2 m/s are unique to the present study and are different from those conventionally expected for die casting. The narrow gap of 0.5 mm, low die temperature of 30 °C, and low plunger speed of 0.2 m/s are considered to be the reasons for this discrepancy.
- (2)
- At a die temperature of 30 °C, the flow length decreased with increasing plunger speed, while at a die temperature of 150 °C, it increased with increasing plunger speed.
- (3)
- The mechanism responsible for the results at a die temperature of 30 °C and a plunger speed of 0.2 m/s was discussed in terms of the peeling of the solidified layer from the die surface, and the unique results obtained in this study could be explained by a model that takes into account this peeling.
- (4)
- At a die temperature of 30 °C and a plunger speed at 0.2 m/s, the flow length for Al-0.5%Fe and Al-0.7%Fe was longer than that for 99.9%Al and 99.7%Al, while at a die temperature of 150 °C, the flow length decreased with increasing Fe content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- JIS H 5032: 2006(E); Aluminum Alloy Die Castings. Japanese Industrial Standards Committee: Tokyo, Japan, 2006.
- Flemings, M.C.; Niyama, E.; Tayor, H.F. Fluidity of Aluminum alloys. An experimental and qualitative evaluation. AFS Trans. 1961, 69, 566–576. [Google Scholar]
- Kayama, N.; Murai, K.; Kiguchi, S.; Satoh, H. Effect of formation of primary crystals on fluidity and viscosity in nearly stages of solidification. Rep. Cast. Res. Lab. Waseda Univ. 1976, 27, 1–8. [Google Scholar]
- Dahle, A.K.; BæcKerund, L.; Arnberg, L. Castability of Aluminum foundry alloys. Int. J. Cast Met. Res. 1996, 9, 103–112. [Google Scholar] [CrossRef]
- Timelli, G.; Bonollo, F. Fluidity of aluminium die castings alloy. Int. J. Cast Met. Res. 2007, 20, 304–311. [Google Scholar] [CrossRef]
- Hans, E.; Xu, H. Fluidity of alloys under high pressure die casting conditions. Scr. Mater. 2005, 53, 7–10. [Google Scholar]
- Han, Q.; Zhang, J. Fluidity of alloys under high-pressure die casting conditions: Flow–choking mechanisms. Metall. Mater. Trans. B 2020, 51, 1795–1804. [Google Scholar] [CrossRef]
- Mollard, F.R.; Flemings, M.C.; Niyama, E.F. Understanding aluminum fluidity: The key to advanced cast products. AFS Trans. 1987, 95, 647–652. [Google Scholar]
- Sheshadri, M.R.; Ramachandran, A. Casting fluidity and fluidity of aluminium and its alloys. Mod. Cast. 1965, 21, 110–122. [Google Scholar]
- Gowri, S.; Samuel, F.H. Effect of alloying element on the solidification characteristic and microstructure of Al-Si-Cu-Mg-Fe 380 alloy. Metall. Mater. Trans. A 1994, 25, 437–448. [Google Scholar] [CrossRef]
- Behera, R.; Chatterjee, D.; Sutradhar, G. Effect of reinforcement particles on the fluidity and solidification behavior of the stir cast aluminum. Am. J. Mater. Sci. 2012, 2, 53–61. [Google Scholar] [CrossRef]
- Adefuye, O.A. Casting fluidity of commercially pure Al-Si casting alloys. Trans. J. Sci. Technol. 2014, 4, 16–30. [Google Scholar]
- Erzi, E.; Yüksel, Ç.; Gürsoy, Ő.; Çolak, M.; Dispinar, D. Characterisation of aluminum alloys by octopus fluidity test. J. Polytech. 2024, 27, 21–25. [Google Scholar] [CrossRef]
- Chen, G.C.; Li, X. Effect of TiC nano-treating on the fluidity and solidification behavior of aluminum alloy 6063. J. Mater. Process. Technol. 2024, 324, 118241. [Google Scholar] [CrossRef]
- Shah, A.W.; Ha, S.H.; Kim, B.H.; Yoon, Y.O.; Lim, H.K.; Kim, S.K. Effect of Si addition flow behavior in Al-Mg and Al-Mg-Si molten alloys. Metall. Mater. Trans. A 2020, 51, 6670–6678. [Google Scholar] [CrossRef]
- Mao, G.; Wu, Z.; Liu, S.; Zhong, L.; Gao, W. The fluidity of A357 alloy with scandium (Sc) and zirconium (Zr) addition. J. Mater. Res. Technol. 2020, 9, 13570–13574. [Google Scholar] [CrossRef]
- Durmuş, M.; Dispinar, D.; Gavgali, M.; Uslu, E.; Çolak, M. Evaluation of Fe content on the fluidity of A356 aluminum alloy by new fluidity index. Int. J. Metalcast. 2024. [Google Scholar] [CrossRef]
- Guo, T.; Wang, B.; Zhang, Z.; Sun, Q.; Jin, Y.; Ding, W. Effect of micro-scale Er on the microstructure and fluidity of ZL205A alloy. Materials 2019, 12, 1688. [Google Scholar] [CrossRef]
- Niesse, J.E.; Flemings, M.C.; Taylor, H.F. Applications of Theory in Understanding Fluidity of Metals. AFS Trans. 1959, 67, 685–697. [Google Scholar]
- Sahoo, K.L.; Sivaramakrishnan, C.S. Some studies on Al–8.3Fe–0.8V–0.9Si alloy for near net shape casting. J. Mater. Process. Technol. 2002, 135, 253–257. [Google Scholar] [CrossRef]
- Bang, H.S.; Kwon, H.I.; Chung, S.B.; Kim, D.U.; Kim, M.S. Experimental investigation and numerical simulation of the fluidity of A356 aluminum alloy. Metals 2022, 12, 1986. [Google Scholar] [CrossRef]
- Šolc, M.; Blaško, P.; Pentrík, J.; Gimanová, L.; Blašková, A.; Małyea, T.; Furman, J.; Socha, V. Simulation Models in a Fluidity Test of the Al-Si Alloy. Metals 2024, 14, 456. [Google Scholar] [CrossRef]
- Köse, S.; Süküroğlu, E.S. Investigation of the effects of filling speed, casting temperature and metallurgical quality on fluidity of lamellars graphite cast iron at different section thickness. Int. J. Metalcast. 2024. [Google Scholar] [CrossRef]
- Kayama, N. Viscosity and Fluidity in the Early Stages of Solidification of Metals, Quality Control of Engineering Alloys and the Role of metals Science; Delft University of Technology: Delft, The Netherlands, 1978; pp. 103–119. [Google Scholar]
- Niu, G.; Mao, J.; Wang, J. Effect of Ce addition on fluidity of casting aluminum alloy A356. Metall. Mater. Trans. A 2019, 50, 5935–5944. [Google Scholar] [CrossRef]
- Heidazadeh, A.; Emamy, M.; Rhimzadeh, A.; Soufi, R.; Sohrabi Baba Heidary, D.; Nasibi, S. The effect of copper addition on the fluidity and viscosity of an Al-Mg-Si alloy. J. Mater. Eng. Perform. 2014, 23, 469–476. [Google Scholar] [CrossRef]
- Campbell, J. Thin wall castings. Mater. Sci. Technol. 1988, 4, 194–204. [Google Scholar] [CrossRef]
- Emamy, M.; Abbasi, S.; Kaboli, S.; Vampbell, J. Fluidity of Al based metal matrix composites containing Al2O3 and SiC par-ticles. Int. J. Cast Met. Res. 2009, 22, 430–437. [Google Scholar] [CrossRef]
- Rosandi, R.; Masnur, D. Influence of pouring temperatures to fluidity of aluminum scrap cans with investment casting using natural clays as mold materials. JOM FTEKNIK 2016, 3, 1–3. [Google Scholar]
- Niyama, E.; Anzai, K.; Funakubo, T.; Hiratsuka, S. Some basic research for thin wall casting technology. J. Mater. Process. Technol. 1997, 63, 779–783. [Google Scholar]
- Tiryakioglu, M.; Askeland, D.R.; Ramsay, C.W. The fluidity of 319 and A356: An experimental design approach. AFS Trans. 1994, 102, 17–25. [Google Scholar]
- Borouni, M.; Niroumand, N.; Fathi, M.H. Effect of a nano-ceramic mold coating on the fluidity length of thin wall castings in Al4-1 alloy gravity sand casting. Mater. Technol. 2014, 4, 473–477. [Google Scholar]
- Nishi, N. Characteristics of Fluid Flow for Thin Wall Aluminum Alloy Die Castings. Imono 1995, 67, 918–923. [Google Scholar]
- Komazaki, T.; Asada, J.; Watanabe, K.; Sasaki, H.; Nishi, N. Effects of Casting Conditions on Flow Length of Thin-Walled Diecasting for ADC 10 Alloy. Imono 1995, 67, 689–695. [Google Scholar]
- Brenji, R.V. Effectof reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si compisites. China Foundry 2018, 15, 66–74. [Google Scholar] [CrossRef]
- Kim, M.-G.; Sung, S.-Y.; Kim, Y.-J. Microstructure, metal mold reaction and fluidity of investment Cast-TiAl alloys. Mater. Trans. 2004, 45, 536–541. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H. Semisolid casting of product with thin fins by using Al-25%Si. Key Eng. Mater. 2015, 651–653, 1551–1556. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H.; Terao, M. Fabrication thin heat sink by the die casting of semisolid Al-25%Si. Solid State Phenom. 2018, 285, 423–428. [Google Scholar] [CrossRef]
- Masnur, D.; Rosandi, R.; Nawangsari, P. Effect of mold temperature and cavity thickness on the fluidity of the liquid aluminum beverage cans in the clay mold. AIP Conf. Proc. 2024, 3053, 020017. [Google Scholar] [CrossRef]
- Asan, Y.E.; Çolak, M. Modeling the effect of pour height, casting and mold heating conditions for the analysis of fluidity of different section thickness in die mold casting of Al12Si alloy. J. Sci. Technol. 2022, 15, 14–27. [Google Scholar] [CrossRef]
- Fuse, H.; Imamura, S.; Terao, M.; Haga, T. Semisolid die casting of hypereutectic Al-25%Si alloy. Mater. Trans. 2020, 61, 993–999. [Google Scholar] [CrossRef]
- Han, Z.; Wang, Z.; Sun, Z.; Zhang, B.; Rao, W. Influence of non-uniform ultrasonic vibration on casting fluidity of liquid aluminum alloy. Res. Dev. 2022, 19, 380–386. [Google Scholar] [CrossRef]
- Al-Mallak, A.A.; Doos, Q.M. Fluidity of Al-Si alloy in metal mold casting under vibration. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1090, 012081. [Google Scholar] [CrossRef]
- Available online: https://hishinuma.jp/menu/2013/09/hc50f.html (accessed on 29 May 2024).
- Zhang, G.; Wang, Z.; Niu, J.; Xu, H.; Ren, X. Enhanced Fluidity of ZL205A Alloy with the Combined Addition of Al-Ti-C and La. Materials 2021, 14, 6169. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Chai, Y.; Shen, Q.; Cheng, T.; Zhang, H. Analysis of the Fluidity and Hot Tearing Susceptibility of AlSi3.5Mg0.5Cu0.4 and A356 aluminum alloys. Int. J. Metalcast. 2022, 16, 909–923. [Google Scholar] [CrossRef]
- Available online: https://hishinuma.jp/menu/cat/cat132/cat1/ (accessed on 29 May 2024).
- Motomura, M.; Haga, T.; Sakurai, Y. Design and assembling of single roll apparatus for rapid solidification and characteristics of wide Al-Si eutectic alloy foils solidified. J. Jpn. Inst. Light Met. 1988, 38, 528–533. [Google Scholar] [CrossRef]
- Haga, T.; Ishihara, K.; Katayama, T.; Nishiyama, T. Effect of contacting condition between molten metal and roll on Al-12%Si alloy strip cast by melt drag method. Keikinzoku 1998, 48, 613–617. [Google Scholar]
- Haga, T. Development of a twin roll caster for light metals. J. Achiev. Mater. Manuf. Eng. 2010, 43, 393–402. [Google Scholar]
Aluminum | Cu | Si | Mg | Fe | Zn | Mn | Ti | Bal. |
---|---|---|---|---|---|---|---|---|
99.9%Al | 0.00 | 0.01 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | Al |
99.7%Al | 0.00 | 0.04 | 0.00 | 0.10 | 0.03 | 0.00 | 0.00 | Al |
Al-0.3%Fe | 0.00 | 0.04 | 0.00 | 0.28 | 0.04 | 0.00 | 0.00 | Al |
Al-0.5%Fe | 0.00 | 0.04 | 0.00 | 0.47 | 0.04 | 0.00 | 0.00 | Al |
Al-0.7%Fe | 0.00 | 0.04 | 0.00 | 0.71 | 0.03 | 0.00 | 0.00 | Al |
Al-0.9%Fe | 0.00 | 0.03 | 0.00 | 0.93 | 0.04 | 0.00 | 0.00 | Al |
Al-1.1%Fe | 0.00 | 0.03 | 0.00 | 1.05 | 0.03 | 0.00 | 0.00 | Al |
ADC12 | 1.92 | 10.31 | 0.28 | 0.79 | 0.81 | 0.31 | 0.04 | Al |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haga, T.; Fuse, H. Fluidity of Pure Aluminum in a Narrow Channel Die Gap during Die Casting. Metals 2024, 14, 1133. https://doi.org/10.3390/met14101133
Haga T, Fuse H. Fluidity of Pure Aluminum in a Narrow Channel Die Gap during Die Casting. Metals. 2024; 14(10):1133. https://doi.org/10.3390/met14101133
Chicago/Turabian StyleHaga, Toshio, and Hiroshi Fuse. 2024. "Fluidity of Pure Aluminum in a Narrow Channel Die Gap during Die Casting" Metals 14, no. 10: 1133. https://doi.org/10.3390/met14101133
APA StyleHaga, T., & Fuse, H. (2024). Fluidity of Pure Aluminum in a Narrow Channel Die Gap during Die Casting. Metals, 14(10), 1133. https://doi.org/10.3390/met14101133