Preparation and Characterization of Ni-Mn-Ga-Cu Shape Memory Alloy with Micron-Scale Pores
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, P.; Zhou, Z.; Chen, J.; Li, Z.; Yang, B.; Xu, K.; Li, Z.; Li, J.; Zhang, Z.; Wang, D.; et al. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy. J. Mater. Sci. Technol. 2021, 94, 47–52. [Google Scholar] [CrossRef]
- Bachaga, T.; Zhang, J.; Khitouni, M.; Sunol, J.J. NiMn-based Heusler magnetic shape memory alloys: A review. Int. J. Adv. Manuf. Technol. 2019, 103, 2761–2772. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Goto, A.; Tahara, M.; Inamura, T.; Hosoda, H. Investigation of the martensite variant reorientation of the single crystal Ni-Mn-Ga alloy via training processes and a modification with a silicone rubber. Mater. Chem. Phys. 2023, 297, 127390. [Google Scholar] [CrossRef]
- Dunand, D.C.; Mullner, P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 2011, 23, 216–232. [Google Scholar] [CrossRef]
- Ding, Z.; Zhu, J.; Zhang, X.; Liu, D.; Qi, Q.; Zhang, Y.; Cong, D. 14% recoverable strain in Ni52.87Mn23.82Ga23.32 microwires. J. Phys. D Appl. Phys. 2017, 50, 095303. [Google Scholar] [CrossRef]
- Ding, Z.-Y.; Gao, J.-J.; Jiao, Z.-B.; Wu, H.-H.; Chen, A.-Y.; Zhu, J. Strain-magnetization property of Ni-Mn-Ga (Co, Cu) microwires. Rare Met. 2022, 42, 244–253. [Google Scholar] [CrossRef]
- Żuberek, R.; Chumak, O.M.; Nabiałek, A.; Chojnacki, M.; Radelytskyi, I.; Szymczak, H. Magnetocaloric effect and magnetoelastic properties of NiMnGa and NiMnSn Heusler alloy thin films. J. Alloys Compd. 2018, 748, 1–5. [Google Scholar] [CrossRef]
- Niemann, R.; Heczko, O.; Schultz, L.; Fähler, S. Metamagnetic transitions and magnetocaloric effect in epitaxial Ni–Co–Mn–In films. Appl. Phys. Lett. 2010, 97, 222507. [Google Scholar] [CrossRef]
- Zheng, P.; Kucza, N.J.; Wang, Z.; Müllner, P.; Dunand, D.C. Effect of directional solidification on texture and magnetic-field-induced strain in Ni–Mn–Ga foams with coarse grains. Acta Mater. 2015, 86, 95–101. [Google Scholar] [CrossRef]
- Chmielus, M.; Zhang, X.X.; Witherspoon, C.; Dunand, D.C.; Mullner, P. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. Nat. Mater. 2009, 8, 863–866. [Google Scholar] [CrossRef]
- Aydoğmuş, T.; Bor, Ş. Processing of porous TiNi alloys using magnesium as space holder. J. Alloys Compd. 2009, 478, 705–710. [Google Scholar] [CrossRef]
- Nilsén, F.; Lehtonen, J.; Ge, Y.; Aaltio, I.; Hannula, S.-P. Highly porous spark plasma sintered Ni-Mn-Ga structures. Scr. Mater. 2017, 139, 148–151. [Google Scholar] [CrossRef]
- Gao, P.; Tian, B.; Xu, J.; Tong, Y.; Li, L. Microstructure, phase transformation and mechanical property of porous NiMnGa alloys prepared by one-step sintering. Mater. Sci. Eng. A 2020, 788, 139583. [Google Scholar] [CrossRef]
- Gao, J.; Ding, Z.; Fu, S.; Wang, K.; Ma, L.; Zhu, J. The magnetization and magnetoresistance of Ni46Mn23Ga22Co5Cu4 shape memory microwires after mechanical training. J. Mater. Res. Technol. 2023, 23, 1120–1129. [Google Scholar] [CrossRef]
- Zhang, C.; Porcar, L.; Miraglia, S.; Donnadieu, P.; Braccini, M.; Haettel, R.; Verdier, M. Microstructure and correlated mechanical properties study of Ni–(Fe, Co)–Mn–(Al, In) as-spun ribbons. J. Alloys Compd. 2022, 905, 164139. [Google Scholar] [CrossRef]
- Gamzatov, A.G.; Batdalov, A.B.; Khizriev, S.K.; Aliev, A.M.; Varzaneh, A.G.; Kameli, P. The nature of the frequency dependence of the adiabatic temperature change in Ni50Mn28Ga22−x(Cu, Zn)x Heusler alloys in cyclic magnetic fields. J. Alloys Compd. 2023, 965, 171451. [Google Scholar] [CrossRef]
- Scheibel, F.; Liu, W.; Pfeuffer, L.; Shayanfar, N.; Taubel, A.; Skokov, K.P.; Riegg, S.; Wu, Y.; Gutfleisch, O. Influence of Gd-rich precipitates on the martensitic transformation, magnetocaloric effect, and mechanical properties of Ni–Mn–In Heusler alloys—A comparative study. J. Appl. Phys. 2023, 133, 075104. [Google Scholar] [CrossRef]
- Meng, J.; Xie, L.; Yu, Q.; Wang, J.; Jiang, C. Toughening the grain boundaries by introducing a small amount of the second phase: Ni-Cu-Mn-Ga shape memory alloys as an example. Acta Mater. 2024, 263, 119469. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Jiang, C. Study of Ni–Mn–Ga–Cu as single-phase wide-hysteresis shape memory alloys. Mater. Sci. Eng. A 2011, 528, 6907–6911. [Google Scholar] [CrossRef]
- Ishida, A.; Sato, M. Microstructures of crystallized Ti51.5Ni48.5−xCux (x = 23.4–37.3) thin films. Intermetallics 2011, 19, 900–907. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, J.; Chen, X.; Sun, W.; Li, Y.; Zhang, M.; Shao, Y.; Zhang, H.; Yan, A. Giant caloric effect of low-hysteresis metamagnetic shape memory alloys with exceptional cyclic functionality. Acta Mater. 2017, 133, 217–223. [Google Scholar] [CrossRef]
- Boonyongmaneerat, Y.; Chmielus, M.; Dunand, D.C.; Mullner, P. Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 2007, 99, 247201. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, K.; Li, Y.; Wang, Z.; Zhao, Y.; Zhu, J. Mechanical and Magnetic Properties of Porous Ni50Mn28Ga22 Shape Memory Alloy. Metals 2024, 14, 291. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, J.; Wang, J.; Xu, L.; Xu, H. Solid–liquid interface morphology and crystal growth of NiMnGa magnetic shape memory alloys. Acta Mater. 2005, 53, 1111–1120. [Google Scholar] [CrossRef]
- Xuan, J.; Gao, J.; Ding, Z.; Li, X.; Zhu, J. Improved superelasticity and fatigue resistance in nano-precipitate strengthened Ni50Mn23Ga22Fe4Cu1 microwire. J. Alloys Compd. 2021, 877, 160296. [Google Scholar] [CrossRef]
- Nayan, N.; Singh, G.; Murty, S.V.S.N.; Jha, A.K.; Pant, B.; George, K.M.; Ramamurty, U. Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy. Intermetallics 2014, 55, 145–153. [Google Scholar] [CrossRef]
- Chen, F.C.; Luo, X.; Xiao, R.C.; Lu, W.J.; Zhang, B.; Yang, H.X.; Li, J.Q.; Pei, Q.L.; Shao, D.F.; Zhang, R.R.; et al. Superconductivity enhancement in the S-doped Weyl semimetal candidate MoTe2. Appl. Phys. Lett. 2016, 108, 162601. [Google Scholar] [CrossRef]
- Vasseur, A.F. A Rigorous Derivation of the Coupling of a Kinetic Equation and Burgers’ Equation. ArRMA 2012, 206, 1–30. [Google Scholar] [CrossRef]
- Gao, P.; Tian, B.; Xu, J.; Tong, Y.; Chen, F.; Li, L. Investigation on porous NiMnGa alloy and its composite with epoxy resin. J. Alloys Compd. 2022, 892, 162248. [Google Scholar] [CrossRef]
- Imran, M.; Zhang, X.; Qian, M.; Geng, L. Enhancing the Elastocaloric Cooling Stability of Ni Fe Ga Alloys via Introducing Pores. Adv. Eng. Mater. 2020, 22, 1901140. [Google Scholar] [CrossRef]
- Imran, M.; Zhang, X. Ferromagnetic shape memory Ni-Fe-Ga alloy foams for elastocaloric cooling. J. Phys. D Appl. Phys. 2020, 53, 245503. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, J.; Qi, Q.; Liu, D.; Lu, C.; Zhang, Y.; Zhu, J. Superelasticity and acoustic emission of Ni46Mn28Ga20Co3Cu3 microwire. J. Phys. D Appl. Phys. 2018, 51, 305502. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Xie, J. Effects of Strain Rate and Measuring Temperature on the Elastocaloric Cooling in a Columnar-Grained Cu71Al17.5Mn11.5 Shape Memory Alloy. Metals 2017, 7, 527. [Google Scholar] [CrossRef]
- Tong, W.; Liang, L.; Xu, J.; Wang, H.J.; Tian, J.; Peng, L.M. Achieving enhanced mechanical, pseudoelastic and elastocaloric properties in Ni-Mn-Ga alloys via Dy micro-alloying and isothermal mechanical cyclic training. Scr. Mater. 2022, 209, 114393. [Google Scholar] [CrossRef]
- Li, B.Q.; Wang, C.Y.; Lu, X. Effect of pore structure on the compressive property of porous Ti produced by powder metallurgy technique. Mater. Des. 2013, 50, 613–619. [Google Scholar] [CrossRef]
- Pozo-López, G.; Condó, A.M.; Limandri, S.P.; Mutal, R.H.; Winkler, E.; Urreta, S.E.; Fabietti, L.M. Microstructure and magnetic properties of as-cast Ni2MnGa rods and tubes solidified by suction casting. Mater. Charact. 2019, 158, 109956. [Google Scholar] [CrossRef]
- Chu, K.; Sun, Q. Reducing functional fatigue, transition stress and hysteresis of NiTi micropillars by one-step overstressed plastic deformation. Scr. Mater. 2021, 201, 113958. [Google Scholar] [CrossRef]
- Wang, Q.; Yin, H.; Sun, Q. Enhancing functional stability of NiTi tube for elastocaloric cooling performance through overstress training. J. Mater. Res. Technol. 2024, 30, 8906–8914. [Google Scholar] [CrossRef]
- Hong, S.H.; Kim, J.T.; Park, H.J.; Kim, Y.S.; Suh, J.Y.; Na, Y.S.; Lim, K.R.; Shim, C.H.; Park, J.M.; Kim, K.B. Influence of Zr content on phase formation, transition and mechanical behavior of Ni-Ti-Hf-Zr high temperature shape memory alloys. J. Alloys Compd. 2017, 692, 77–85. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.; Yu, Q.; Zhang, Z. The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi. Sci. Rep. 2018, 8, 14910. [Google Scholar] [CrossRef]
- Yang, Z.; Cong, D.; Yuan, Y.; Wu, Y.; Nie, Z.; Li, R.; Wang, Y. Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials. Mater. Res. Lett. 2019, 7, 137–144. [Google Scholar] [CrossRef]
- Hou, H.; Simsek, E.; Ma, T.; Johnson, N.S.; Qian, S.; Cisse, C.; Stasak, D.; Al Hasan, N.; Zhou, L.; Hwang, Y.; et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 2019, 366, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Z.; Zhu, Y.; Rong, L. A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Mater. Sci. Eng. A 2011, 528, 1138–1142. [Google Scholar] [CrossRef]
- Guo, J.; Zhong, M.; Zhou, W.; Zhang, Y.; Wu, Z.; Li, Y.; Zhang, J.; Liu, Y.; Yang, H. Grain Size Effect of the gamma Phase Precipitation on Martensitic Transformation and Mechanical Properties of Ni-Mn-Sn-Fe Heusler Alloys. Materials 2021, 14, 2339. [Google Scholar] [CrossRef]
- Niitsu, K.; Date, H.; Kainuma, R. Thermal activation of stress-induced martensitic transformation in Ni-rich Ti-Ni alloys. Scr. Mater. 2020, 186, 263–267. [Google Scholar] [CrossRef]
- Feng, Y.; Gao, J.; Zhou, M.; Wang, H. Giant elastocaloric effect induced by lower stress in Ni-Mn-In-Fe ferromagnetic shape memory alloys. J. Magn. Magn. Mater. 2022, 563, 169906. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Yang, J.; Li, Z.; Yang, B.; Yan, H.; Wang, D.; Hou, L.; Li, X.; Zhang, Y.; et al. Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy. Scr. Mater. 2019, 163, 116–120. [Google Scholar] [CrossRef]
- Feng, Y.; Yuan, X.; Zhou, M.; Gao, L. Improvement of mechanical properties and elastocaloric effect in Ag doped Ni-Mn-In magnetic shape memory alloys. J. Alloys Compd. 2023, 944, 169143. [Google Scholar] [CrossRef]
- Zhang, G.; Li, D.; Liu, C.; Li, Z.; Yang, B.; Yan, H.; Zhao, X.; Zuo, L. Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy. Scr. Mater. 2021, 201, 113947. [Google Scholar] [CrossRef]
- Guan, Z.; Jiang, X.; Gu, J.; Bai, J.; Liang, X.; Yan, H.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Large magnetocaloric effect and excellent mechanical properties near room temperature in Ni-Co-Mn-Ti non-textured polycrystalline alloys. Appl. Phys. Lett. 2021, 119, 051904. [Google Scholar] [CrossRef]
- Kuang, Y.; Ai, Z.; Yang, B.; Hao, X.; Li, Z.; Yan, H.; Zhang, Y.; Esling, C.; Zhao, X.; Zuo, L. Simultaneously achieved good mechanical properties and large magnetocaloric effect in spark plasma sintered Ni-Mn-In alloys. Intermetallics 2020, 124, 106868. [Google Scholar] [CrossRef]
- Szczerba, M.J.; Chulist, R.; Kopacz, S.; Szczerba, M.S. Effect of initial plastic strain on mechanical training of non-modulated Ni–Mn–Ga martensite structure. Mater. Sci. Eng. A 2014, 611, 313–319. [Google Scholar] [CrossRef]
- Timofeeva, E.E.; Panchenko, E.Y.; Surikov, N.Y.; Tagiltsev, A.I.; Marchenko, E.S.; Chumlyakov, Y.I. On the stress-temperature dependences in TiNi-based shape memory alloys. J. Alloys Compd. 2022, 905, 164227. [Google Scholar] [CrossRef]
- Niitsu, K.; Xu, X.; Umetsu, R.Y.; Kainuma, R. Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy. Appl. Phys. Lett. 2013, 103, 242406. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Xu, K.; Zhang, C.; Wu, Y.; Jiang, C. Large room-temperature elastocaloric effect of Ni57Mn18Ga21In4 alloy undergoing a magnetostructural coupling transition. Scr. Mater. 2017, 130, 148–151. [Google Scholar] [CrossRef]
- Huang, X.-M.; Zhao, Y.; Yan, H.-L.; Jia, N.; Tang, S.; Bai, J.; Yang, B.; Li, Z.; Zhang, Y.; Esling, C.; et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni–Mn-based alloys via copper and boron. Scr. Mater. 2020, 185, 94–99. [Google Scholar] [CrossRef]
- Sasso, C.P.; Zheng, P.; Basso, V.; Müllner, P.; Dunand, D.C. Enhanced field induced martensitic phase transition and magnetocaloric effect in Ni55Mn20Ga25 metallic foams. Intermetallics 2011, 19, 952–956. [Google Scholar] [CrossRef]
Specimens | Composition (%) | Density (g/cm3) | Porosity (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bulk | Porous | 0 | |||||||||
Ni | Mn | Ga | Cu | Ni | Mn | Ga | Cu | ||||
Cu0 | 49.1 | 24.5 | 26.3 | 0 | 50.2 | 23.9 | 25.8 | 0 | 8.1 | 4.4 | 45.2 |
Cu2 | 49.1 | 24.9 | 23.4 | 2.5 | 50.8 | 24.2 | 22.6 | 2.3 | 8.1 | 4.3 | 46.4 |
Cu3 | 50.0 | 23.4 | 23.1 | 3.4 | 51.4 | 22.1 | 23.3 | 3.2 | 8.2 | 4.5 | 45.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, Z.; Li, Y.; Zhu, J.; Ding, Z. Preparation and Characterization of Ni-Mn-Ga-Cu Shape Memory Alloy with Micron-Scale Pores. Metals 2024, 14, 1155. https://doi.org/10.3390/met14101155
Wang K, Wang Z, Li Y, Zhu J, Ding Z. Preparation and Characterization of Ni-Mn-Ga-Cu Shape Memory Alloy with Micron-Scale Pores. Metals. 2024; 14(10):1155. https://doi.org/10.3390/met14101155
Chicago/Turabian StyleWang, Kunyu, Zhiqiang Wang, Yunlong Li, Jie Zhu, and Zhiyi Ding. 2024. "Preparation and Characterization of Ni-Mn-Ga-Cu Shape Memory Alloy with Micron-Scale Pores" Metals 14, no. 10: 1155. https://doi.org/10.3390/met14101155
APA StyleWang, K., Wang, Z., Li, Y., Zhu, J., & Ding, Z. (2024). Preparation and Characterization of Ni-Mn-Ga-Cu Shape Memory Alloy with Micron-Scale Pores. Metals, 14(10), 1155. https://doi.org/10.3390/met14101155