Holistic Research for Lithium-Ion Battery Recycling as Basis for a Sustainable Industrial Business
Funding
Conflicts of Interest
Abbreviations
LCO | Lithium cobalt oxide |
LFP | Lithium iron phosphate |
LIB | Lithium-ion battery |
LiS | Lithium-sulfur |
LLZO | Lithium lanthanum zirconium oxide |
LMO | Lithium manganese oxide |
MDPI | Multidisciplinary Digital Publishing Institute |
NCA | Lithium nickel cobalt aluminium oxide |
NMC | Nickel cobalt manganese |
SSB | Solid-state battery |
List of Contributions
- Kaas, A.; Wilke, C.; Rabaschus, J.S.; Mütze, T.; Peuker, U.A. Modelling the Sorting of Lithium-Ion Battery Components in a Zig-Zag Air Classifier. Metals 2024, 14, 269. https://doi.org/10.3390/met14030269.
- Richter, J.; Lorenz, S.; Kaas, A.; Fuchs, M.; Röder, C.; Peuker, U.A.; Heitmann, J.; Gloaguen, R. Spectral Characterization of Battery Components from Li-Ion Battery Recycling Processes. Metals 2024, 14, 147. https://doi.org/10.3390/met14020147.
- Wilke, C.; Kaas, A.; Peuker, U.A. Influence of the Cell Type on the Physical Processes of the Mechanical Recycling of Automotive Lithium-Ion Batteries. Metals 2023, 13, 1901. https://doi.org/10.3390/met13111901.
- Stallmeister, C.; Friedrich, B. Holistic Investigation of the Inert Thermal Treatment of Industrially Shredded NMC 622 Lithium-Ion Batteries and Its Influence on Selective Lithium Recovery by Water Leaching. Metals 2023, 13, 2000. https://doi.org/10.3390/met13122000.
- Biswas, J.; Ulmala, S.; Wan, X.; Partinen, J.; Lundström, M.; Jokilaakso, A. Selective Sulfation Roasting for Cobalt and Lithium Extraction from Industrial LCO-Rich Spent Black Mass. Metals 2023, 13, 358. https://doi.org/10.3390/met13020358.
- Schwich, L.; Friedrich, B. Environmentally Friendly Recovery of Lithium from Lithium–Sulfur Batteries. Metals 2022, 12, 1108. https://doi.org/10.3390/met12071108.
- Qiu, H.; Peschel, C.; Winter, M.; Nowak, S.; Köthe, J.; Goldmann, D. Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique. Metals 2022, 12, 677. https://doi.org/10.3390/met12040677.
- Balachandran, S.; Forsberg, K.; Lemaître, T.; Vieceli, N.; Lombardo, G.; Petranikova, M. Comparative Study for Selective Lithium Recovery via Chemical Transformations during Incineration and Dynamic Pyrolysis of EV Li-Ion Batteries. Metals 2021, 11, 1240. https://doi.org/10.3390/met11081240.
- Kuzuhara, S.; Ota, M.; Tsugita, F.; Kasuya, R. Recovering Lithium from the Cathode Active Material in Lithium-Ion Batteries via Thermal Decomposition. Metals 2020, 10, 433. https://doi.org/10.3390/met10040433.
- Munchen, D.D.; Milicevic Neumann, K.; Öner, I.E.; Friedrich, B. Transfer of Early-Stage Lithium Recovery from Laboratory-Scale Water Leaching to Upscale Challenges. Metals 2024, 14, 67. https://doi.org/10.3390/met14010067.
- Gerold, E.; Lerchbammer, R.; Antrekowitsch, H. Evaluation of the Influence Exerted by Increased Silicon Contents on the Leaching Behavior of NMC-Based Black Mass. Metals 2023, 13, 785. https://doi.org/10.3390/met13040785.
- Schmitz, D.; Prasetyo, H.; Birich, A.; Yeetsorn, R.; Friedrich, B. Co-Precipitation of Metal Oxalates from Organic Leach Solution Derived from Spent Lithium-Ion Batteries (LIBs). Metals 2024, 14, 80. https://doi.org/10.3390/met14010080.
- Lerchbammer, R.; Gerold, E.; Antrekowitsch, H. Gluconic Acid Leaching of Spent Lithium-Ion Batteries as an Environmentally Friendly Approach to Achieve High Leaching Efficiencies in the Recycling of NMC Active Material. Metals 2023, 13, 1330. https://doi.org/10.3390/met13081330.
- Zorin, A.; Song, T.; Gastol, D.; Kendrick, E. Acid-Assisted Separation of Cathodic Material from Spent Electric Vehicle Batteries for Recycling. Metals 2023, 13, 1276. https://doi.org/10.3390/met13071276.
- Sahu, S.; Pati, S.; Devi, N. A Detailed Kinetic Analysis of the Environmentally Friendly Leaching of Spent Lithium-Ion Batteries Using Monocarboxylic Acid. Metals 2023, 13, 947. https://doi.org/10.3390/met13050947.
- Schneider, K.; Kiyek, V.; Finsterbusch, M.; Yagmurlu, B.; Goldmann, D. Acid Leaching of Al- and Ta-Substituted Li7La3Zr2O12 (LLZO) Solid Electrolyte. Metals 2023, 13, 834. https://doi.org/10.3390/met13050834.
- Prasetyo, E.; Anderson, C.; Jaya, A.; Muryanta, W.; Handoko, A.; Amin, M.; Al Muttaqii, M.; Bahfie, F. Fractionation of Transition Metals by Solvent Extraction and Precipitation from Tannic Acid-Acetic Acid Leachate as a Product of Lithium-Ion Battery Leaching. Metals 2022, 12, 882. https://doi.org/10.3390/met12050882.
- Kutzer-Schulze, C.; Schmidt, H.; Weiser, M.; Büttner, T.; Schneider, M.; Michaelis, A. An Electrochemical Approach to the Recovery of Metals Typical of Battery Waste. Metals 2024, 14, 109. https://doi.org/10.3390/met14010109.
- Rinne, T.; Klemettinen, A.; Klemettinen, L.; Ruismäki, R.; O’Brien, H.; Jokilaakso, A.; Serna-Guerrero, R. Recovering Value from End-of-Life Batteries by Integrating Froth Flotation and Pyrometallurgical Copper-Slag Cleaning. Metals 2022, 12, 15. https://doi.org/10.3390/met12010015.
- Holzer, A.; Wiszniewski, L.; Windisch-Kern, S.; Raupenstrauch, H. Optimization of a Pyrometallurgical Process to Efficiently Recover Valuable Metals from Commercially Used Lithium-Ion Battery Cathode Materials LCO, NCA, NMC622, and LFP. Metals 2022, 12, 1642. https://doi.org/10.3390/met12101642.
- Luo, W.; Hu, G.; Ding, J.; Wu, J.; Ma, W. Thermodynamics of Vacuum Chloride Volatilization of Ni, Co, Mn, Li, Al, and Cu in Spent Lithium−Ion Battery. Metals 2022, 12, 2183. https://doi.org/10.3390/met12122183.
- Petzold, M.; Flamme, S. Recycling Strategies for Spent Consumer Lithium-Ion Batteries. Metals 2024, 14, 151. https://doi.org/10.3390/met14020151.
- Marcinov, V.; Klimko, J.; Takáčová, Z.; Pirošková, J.; Miškufová, A.; Sommerfeld, M.; Dertmann, C.; Friedrich, B.; Oráč, D. Lithium Production and Recovery Methods: Overview of Lithium Losses. Metals 2023, 13, 1213. https://doi.org/10.3390/met13071213.
- Botelho Junior, A.B.; Stopic, S.; Friedrich, B.; Tenório, J.A.S.; Espinosa, D.C.R. Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review. Metals 2021, 11, 1999. https://doi.org/10.3390/met11121999.
References
- Friedrich, B.; Stallmeister, C. 20 Years of Process Development for Li-Batteries Recycling—Current Status and Open Issues. Conference: Advanced Battery Power. 11 April 2024. Available online: https://www.researchgate.net/publication/379838410_20_years_of_process_development_for_Li-batteries_recycling_-_current_status_and_open_issues (accessed on 26 September 2024).
- Friedrich, B. The “Big Five” Factors for a Sustainable Industrial Business in Li-Battery Recycling. 2024. Available online: https://www.researchgate.net/publication/382253654_The_big_five_Factors_for_a_Sustainable_Industrial_Business_in_Li-Battery_Recycling?channel=doi&linkId=6694d5d3b15ba55907582828&showFulltext=true (accessed on 26 September 2024).
- Europäisches Parlament und Rat. Verordnung (EU) 2023/des Europäischen Parlaments und des Rates vom 12. Juli 2023 über Batterien und Altbatterien, zur Änderung der Richtlinie 2008/98/EG und der Verordnung (EU) 2019/1020 und zur Aufhebung der Richtlinie 2006/66/EG. Amtsblatt der Europäischen Union. 28 July 2023. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32023R1542 (accessed on 26 September 2024).
Flied of Research | Source |
---|---|
Mechanical Pretreatment | (Contributions 1–3) |
Thermal Pretreatment | (Contributions 4–9) |
Hydrometallurgy | (Contributions 5–18) |
Pyrometallurgy | (Contributions 19 and 20) |
Simulation | (Contribution 21) |
Review | (Contributions 22–24) |
Type of Battery | Source |
---|---|
NMC | (Contributions 1, 3, 4, 7, 8, 11–13, 20, 22 and 24) |
NCA | (Contributions 1, 3, 14, 20, 22 and 24) |
LFP | (Contributions 1, 3, 20, 22 and 24) |
LCO | (Contributions 3, 5, 9, 15, 19, 20, 22 and 24) |
LMO | (Contributions 3, 14, 22 and 24) |
LiS | (Contribution 6) |
SSB/LLZO | (Contribution 16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friedrich, B.; Dittmer, D. Holistic Research for Lithium-Ion Battery Recycling as Basis for a Sustainable Industrial Business. Metals 2024, 14, 1172. https://doi.org/10.3390/met14101172
Friedrich B, Dittmer D. Holistic Research for Lithium-Ion Battery Recycling as Basis for a Sustainable Industrial Business. Metals. 2024; 14(10):1172. https://doi.org/10.3390/met14101172
Chicago/Turabian StyleFriedrich, Bernd, and Dominic Dittmer. 2024. "Holistic Research for Lithium-Ion Battery Recycling as Basis for a Sustainable Industrial Business" Metals 14, no. 10: 1172. https://doi.org/10.3390/met14101172
APA StyleFriedrich, B., & Dittmer, D. (2024). Holistic Research for Lithium-Ion Battery Recycling as Basis for a Sustainable Industrial Business. Metals, 14(10), 1172. https://doi.org/10.3390/met14101172