Formation of Graded TiO2 Layer on Ti Wire by Direct Alternating Current Discharge Plasma at Atmospheric Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Polishing
2.1.2. Pretreatment by SP
2.1.3. Oxidation by Direct APP Treatment
2.2. Evaluation
2.2.1. Observation of the Samples
2.2.2. Three-Point Bending Test
3. Results and Discussion
3.1. Direct APP Treatment on Plate Sample Using Pipe-Shaped Electrode
3.2. Direct APP Treatment on Wire Samples
3.3. Cross-Sectional Observation of Wire Samples
3.4. Hardness Distribution of the Sample
3.5. Three-Point Bending Test
3.6. Offset Direct APP Treatment
4. Conclusions
- (1)
- Although pipe-shaped electrodes form unstable plasma, a stable discharge plasma will be formed by a bar-shaped electrode with a sharp tip;
- (2)
- A titanium oxide layer with enough whiteness can be obtained on pure Ti wire using a bar-shaped electrode;
- (3)
- The oxide layer was partly delaminated by the bending test. Delamination after an offset three-point bending test was not found at the arched region but around the center of plasma exposure;
- (4)
- Arching for a white oxide layer-coated Ti wire is possible without delamination when the proper direct APP treatment is performed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niinomi, M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Trans. 2008, 49, 2170–2178. [Google Scholar] [CrossRef]
- Kuroda, D.; Niinomi, M.; Morinaga, M.; Kato, Y.; Yashiro, T. Design and Mechanical Properties of New β type Titanium Alloys for Implant Materials. Mater. Sci. Eng. A 1998, 243, 244–249. [Google Scholar] [CrossRef]
- Niinomi, M.; Hattori, T.; Morikawa, K.; Kasuga, T.; Suzuki, A.; Fukui, H.; Niwa, S. Development of Low Rigidity β-Type Titanium Alloy for Biomedical Applications. Mater. Trans. 2002, 43, 2970–2977. [Google Scholar] [CrossRef]
- Niinomi, M. Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods. Sci. Tech. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef]
- Nuswantoro, N.F.; Gunawarman, N.; Manjas, M.; Suharti, N.; Juliadmi, D.; Kasuma, N.; Aminatun, Y.Y.; Sari, Y.W.; Niinomi, M.; Akahori, T. Effect of Hydroxyapatite Coating Thickness on Inflammation and Osseointegration of Ti–29Nb–13Ta-4.6Zr (TNTZ) Implants. J. Mater. Res. Tech. 2024, 30, 6210–6217. [Google Scholar] [CrossRef]
- Antończak, A.J.; Stępak, B.; Kozioł, P.E.; Abramski, K.M. The Influence of Process Parameters on the Laser-Induced Coloring of Titanium. Appl. Phys. A 2014, 115, 1003–1013. [Google Scholar] [CrossRef]
- Ayorinde, T.; Sayes, C.M. An Updated Review of Industrially Relevant Titanium Dioxide and Its Environmental Health Effects. J. Hazard. Mater. Lett. 2023, 4, 100085. [Google Scholar] [CrossRef]
- Fukui, H. Catalytic Activity of Titanium Dioxide. Shikizai 1999, 72, 633–639. (In Japanese) [Google Scholar]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Diebold, M.; Backer, S.D.; Niedenzu, P.M.; Hester, B.R.; Vanhecke, F.A.C. White Pigments. In Pigments, Extenders, and Particles in Surface Coatings and Plastics; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 241–261. [Google Scholar]
- Obata, A.; Miura-Fujiwara, E.; Shimizu, A.; Maeda, H.; Nakai, M.; Watanabe, Y.; Niinomi, M.; Kasuga, T. White-Ceramic Conversion on Ti-29Nb-13Ta-4.6Zr Surface for Dental Applications. Adv. Mater. Sci. Eng. 2013, 2013, 501621. [Google Scholar] [CrossRef]
- Miura-Fujiwara, E.; Mizushima, K.; Watanabe, Y.; Kasuga, T.; Niinomi, M. Color Tone and Interfacial Microstructure of White Oxide Layer on Commercially Pure Ti and Ti–Nb–Ta–Zr Alloys. Jpn. J. Appl. Phys. 2014, 53, 11RD02. [Google Scholar] [CrossRef]
- Miura-Fujiwara, E.; Suzuki, Y.; Ito, M.; Yamada, M.; Matsutake, S.; Takashima, S.; Sato, H.; Watanabe, Y. Effects of Shot-Peening and Atmospheric-Pressure Plasma on Aesthetic Improvement of Ti–Nb–Ta–Zr Alloy for Dental Applications. Jpn. J. Appl. Phys. 2018, 57, 01AG05. [Google Scholar] [CrossRef]
- Mitsuishi, N.; Miura-Fujiwara, E.; Yamada, M.; Chiba, T.; Sato, H.; Watanabe, Y.; Ito, M.; Takashima, S.; Nakai, M.; Akahori, T.; et al. Application of Atmospheric-Pressure Plasma Treatment to Coat Ti-Alloy Orthodontic Wire with White Oxide Layer. Jpn. J. Appl. Phys. 2020, 59, SAAC09. [Google Scholar] [CrossRef]
- Borude, R.R.; Sugiura, H.; Ishikawa, K.; Tsutsumi, T.; Kondo, H.; Han, J.G.; Hori, M. Modifications of Surface and Bulk Properties of Magnetron-Sputtered Carbon Films Employing a Post-Treatment of Atmospheric Pressure Plasma. Jpn. J. Appl. Phys. 2019, 58, SAAC07. [Google Scholar] [CrossRef]
- Iwasaki, M.; Takeda, K.; Ito, M.; Yara, T.; Uehara, T.; Hori, M. Effect of Low Level O2 Addition to N2 on Surface Cleaning by Nonequilibrium Atmospheric-Pressure Pulsed Remote Plasma. Jpn. J. Appl. Phys. 2007, 46, L540–L542. [Google Scholar] [CrossRef]
- Iwasaki, M.; Inui, H.; Kano, H.; Ito, M.; Suzuki, Y.; Sutou, D.; Nakada, K.; Hori, M. Surface Modification Process of Contact Lens Using Three-Phase AC Excited Nonequilibrium Atmospheric Pressure Ar Plasma. Jpn. J. Appl. Phys. 2008, 47, 3625–3629. [Google Scholar] [CrossRef]
- Yoshimitsu, Y.; Ichiki, R.; Kasamura, K.; Yoshida, M.; Akamine, S.; Kanazawa, S. Atmospheric-Pressure-Plasma Nitriding of Titanium Alloy. Jpn. J. Appl. Phys. 2015, 54, 030302. [Google Scholar] [CrossRef]
- Kobayashi, M.; Matsui, T.; Murakami, Y. Mechanism of Creation of Compressive Residual Stress by Shot Peening. Int. J. Fatigue 1998, 20, 351–357. [Google Scholar] [CrossRef]
- Todaka, Y.; Umemoto, M.; Watanabe, Y.; Yamazaki, A.; Wang, C.; Tsuchiya, K. Formation of Surface Nanocrystalline Structure in Steels by Shot Peening and Role of Strain Gradient on Grain Refinement by Deformation. ISIJ Inter. 2007, 47, 157–162. [Google Scholar] [CrossRef]
- Sato, H.; Nishiura, T.; Moritani, T.; Watanabe, Y. Atypical Phase Transformation Behavior of Fe-33%Ni Alloys Induced by Shot Peening. Surf. Coat. Tech. 2023, 462, 129470. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K.-D. Atmospheric Pressure Plasma Jets: An Overview of Devices and New Directions. Plasma Sources Sci. Tech. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Kitayama, S.; Shida, Y.; Murayama, J. Effect of Surface Condition on the Anodizing Behavior of Titanium. Tetsu-to-Hagane 1991, 77, 1198–1205. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Napoli, G.; Paura, M.; Vela, T.; Schino, A.D. Colouring Titanium Alloys by Anodic Oxidation. Metalurgija 2018, 57, 111–113. [Google Scholar]
- Diamanti, M.V.; Curto, B.D.; Pedeferri, M.P. Interference Colors of Thin Oxide Layers on Titanium. Color Res. Appl. 2008, 33, 221–228. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Curto, B.D.; Masconale, V.; Passaro, C.; Pedeferri, M.P. Anodic Coloring of Titanium and Its Alloy for Jewels Production. Color Res. Appl. 2012, 37, 384–390. [Google Scholar] [CrossRef]
- Gaul, E. Coloring Titanium and Related Metals by Electrochemical Oxidation. J. Chem. Educ. 1993, 70, 176–178. [Google Scholar] [CrossRef]
- Wagenaars, E. Plasma Breakdown of Low-Pressure Gas Discharges; Technische Universiteit: Eindhoven, The Netherlands, 2006; p. 6. [Google Scholar]
- Hasegawa, A.; Motonomi, A.; Ikeda, I.; Kawaguchi, S. Color of Natural Tooth Crown in Japanese People. Color Res. Appl. 2000, 25, 43–48. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. Functionally Graded Materials, Design, Processing and Applications; Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G., Eds.; Springer: New York, NY, USA, 1999; pp. 1–6. [Google Scholar]
- Jamian, S.; Sato, H.; Watanabe, Y. Formation of Compositional Gradient in Al/SiC FGMs Fabricated Under Centrifugal Forces: Solid-Particle Method and Mixed-Powder Method. Ceram. Inter. 2019, 45, 9444–9453. [Google Scholar] [CrossRef]
- AlHarbia, S.; Alkofideb, E.A.; AlMadic, A. Mathematical Analyses of Dental Arch Curvature in Normal Occlusion. Angle Orthod. 2008, 78, 281–287. [Google Scholar] [CrossRef]
- Mina, M.; Borzabadi-Farahani, A.; Tehranchi, A.; Nouri, M.; Younessian, F. Mathematical Beta Function Formulation for Maxillary Arch Form Prediction in Normal Occlusion Population. Odontology 2017, 105, 229–236. [Google Scholar] [CrossRef]
- Bogdanov, V.L.; Grigorenko, O.Y.; Malanchuk, V.O.; Tormakhov, M.M. Mechanical-Mathematical Modeling of the Shape of Dental Arches for Orthognathic Occlusion. J. Math. Sci. 2023, 277, 145–152. [Google Scholar] [CrossRef]
Sample Name | Shape and Size [mm × mm × mm] | Shape of Electrode | Distance between Electrode and Sample, z [mm] | Time, t [s] | Voltage, V [kV] |
---|---|---|---|---|---|
Sample P1 | Plate, 10 × 30 × 1 | Pipe | 5 | 60 | 7.5 |
Sample P2 | 120 | ||||
Sample P3 | 3 | ||||
Sample P4 | 9.0 |
Sample Name | Diameter of Wire [mm] | Shot Peening Pretreatment | Shape of Electrode | Distance between Electrode and Sample z [mm] | Time t [s] | Voltage V [kV] | Grayscale |
---|---|---|---|---|---|---|---|
Sample W1 | 0.685 | N/A | Pipe | 5 | 60 | 9.0 | N/A |
Sample W2 | 0.8 | ||||||
Sample W3 | 3 | 12.0 | ⑦ | ||||
Sample W4 | Bar | ③ | |||||
Sample W5 | Yes | ④–⑤ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, Y.; Mitsuishi, N.; Yamada, M.; Sato, H.; Takashima, S.; Miura-Fujiwara, E. Formation of Graded TiO2 Layer on Ti Wire by Direct Alternating Current Discharge Plasma at Atmospheric Pressure. Metals 2024, 14, 1207. https://doi.org/10.3390/met14111207
Watanabe Y, Mitsuishi N, Yamada M, Sato H, Takashima S, Miura-Fujiwara E. Formation of Graded TiO2 Layer on Ti Wire by Direct Alternating Current Discharge Plasma at Atmospheric Pressure. Metals. 2024; 14(11):1207. https://doi.org/10.3390/met14111207
Chicago/Turabian StyleWatanabe, Yoshimi, Naho Mitsuishi, Motoko Yamada, Hisashi Sato, Seigo Takashima, and Eri Miura-Fujiwara. 2024. "Formation of Graded TiO2 Layer on Ti Wire by Direct Alternating Current Discharge Plasma at Atmospheric Pressure" Metals 14, no. 11: 1207. https://doi.org/10.3390/met14111207
APA StyleWatanabe, Y., Mitsuishi, N., Yamada, M., Sato, H., Takashima, S., & Miura-Fujiwara, E. (2024). Formation of Graded TiO2 Layer on Ti Wire by Direct Alternating Current Discharge Plasma at Atmospheric Pressure. Metals, 14(11), 1207. https://doi.org/10.3390/met14111207